转自大佬博客https://blog.csdn.net/pengwill97/article/details/77200372#commentBox
高斯消元快速入门
一、基本描述
学习一个算法/技能,首先要知道它是干什么的,那么高斯消元是干啥的呢?
高斯消元主要用来求解线性方程组,也可以求解矩阵的秩,矩阵的逆。在ACM中是一个有力的数学武器.
它的时间复杂度是n^3,主要与方程组的个数,未知数的个数有关。
那么什么是线性方程组呢?
简而言之就是有多个未知数,并且每个未知数的次数均为一次,这样多个未知数组成的方程组为线性方程组。
二、算法过程
其实高斯消元的过程就是手算解方程组的过程,回忆一下小的时候怎么求解方程组:加减消元,消去未知数,如果有多个未知数,就一直消去,直到得到类似kx=b(k和b为常数,x为未知数)的式子,就可以求解出未知数x,然后我们回代,依次求解出各个未知数的值,就解完了方程组。
换句话说,分两步:
1. 加减消元
2. 回代求未知数值
高斯消元就是这样的一个过程。
下面通过一个小例子来具体说明
0.求解方程组
有这样一个三元一次方程组:
2x+y+z=16①
x+2y+z=−1②
−2x+2y+z=7③
1.消去x
①×(−3)+②
得到
0x−y−2z=−4
①+③
得到
0x+3y+2z=8
从而得到
2x+y+z=10①
x−y−2z=−40②
x+3y+2z=8③
2.消去y
②×3+③
得到
0x+0y−4z=−4
进而得到
2x+y+z=10①
x−y−2z=−40②
x+0y−4z=−4③
至此,我们已经求解出来了
z=1
下一步我们进行回代过程
3.回代求解y
将z=1
带入②
,求得
y=2
进而得到
2x+y+z=1①
y=2②
z=1③
4.回代求解x
将z=1,y=2
带入①
,求得
x=−1
最终得到
x=−1①
y=2②
z=1③
至此,整个方程组就求解完毕了。
三、再解算法
对于方程组,其系数是具体存在矩阵(数组)里的,下面在给出实际在矩阵中的表示(很熟悉就可以跳过不看啦~)
0.求解方程组
x y z val
2 1 1 1
6 2 1 1
-2 2 1 7
1.消去x
x y z val
2 1 1 1
0 -1 -2 -4
0 3 2 8
2.消去y
x y z val
2 1 1 1
0 -1 -2 -4
0 0 -4 -4
3.回代求解y
回代的时候,记录各个变量的结果将保存在另外一个数组当中,故保存矩阵的数组值不会发生改变,该矩阵主要进行消元过程。
x y z val
2 1 1 1
0 -1 -2 -4
0 0 -4 -4
四、再再解算法
说了这么多,其实有一些情况我们还没有说到。
通过上述的消元方法,其实我们比较希望得到的是一个上三角阵(省去了最后的val)
2 1 1
0 -1 -2
0 0 -4
下面问题来了:
Q1:系数不一定是整数啊?
A1:这时候数组就要用到浮点数了!不能是整数!
Q2:什么时候无解啊?
A2:消元完了,发现有一行系数都为0,但是常数项不为0,当然无解啦!比如:
x y z val
2 1 1 1
0 -1 -2 -4
0 0 0 5
Q3:什么时候多解啊?
A3:消元完了,发现有好几行系数为0,常数项也为0,这样就多解了!有几行为全为0,就有几个自由元,所谓自由元,就是这些变量的值可以随意取,有无数种情况可以满足给出的方程组,比如:
x y z val
2 1 1 1
0 0 0 0
0 0 0 0
您说这x,y,z不是无数组解嘛!
Q4:那什么时候解是唯一的啊!
A4:您做一下排除法,不满足2和3的,不就是解释唯一的嘛!其实也就是说我们的系数矩阵可以化成上三角阵。
五、代码实现
啰里啰嗦说了一堆,想必算法的流程已经熟悉了,代码如何实现呢?
更多类型的 高斯消元模板
(以下参考kuangbin大牛的模板)
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<math.h>
using namespace std;
const int MAXN=50;
int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元
int gcd(int a,int b){
if(b == 0) return a; else return gcd(b,a%b);
}
inline int lcm(int a,int b){
return a/gcd(a,b)*b;//先除后乘防溢出
}
// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var){
int i,j,k;
int max_r;// 当前这列绝对值最大的行.
int col;//当前处理的列
int ta,tb;
int LCM;
int temp;
int free_x_num;
int free_index;
for(int i=0;i<=var;i++){
x[i]=0;
free_x[i]=true;
}
//转换为阶梯阵.
col=0; // 当前处理的列
for(k = 0;k < equ && col < var;k++,col++){// 枚举当前处理的行.
// 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
max_r=k;
for(i=k+1;i<equ;i++){
if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
}
if(max_r!=k){// 与第k行交换.
for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
}
if(a[k][col]==0){// 说明该col列第k行以下全是0了,则处理当前行的下一列.
k--;
continue;
}
for(i=k+1;i<equ;i++){// 枚举要删去的行.
if(a[i][col]!=0){
LCM = lcm(abs(a[i][col]),abs(a[k][col]));
ta = LCM/abs(a[i][col]);
tb = LCM/abs(a[k][col]);
if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加
for(j=col;j<var+1;j++){
a[i][j] = a[i][j]*ta-a[k][j]*tb;
}
}
}
}
// 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
for (i = k; i < equ; i++){ // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
if (a[i][col] != 0) return -1;
}
// 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
// 且出现的行数即为自由变元的个数.
if (k < var){
return var - k; // 自由变元有var - k个.
}
// 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
// 计算出Xn-1, Xn-2 ... X0.
for (i = var - 1; i >= 0; i--){
temp = a[i][var];
for (j = i + 1; j < var; j++){
if (a[i][j] != 0) temp -= a[i][j] * x[j];
}
if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.
x[i] = temp / a[i][i];
}
return 0;
}
int main(void){
// freopen("in.txt", "r", stdin);
// freopen("out.txt","w",stdout);
int i, j;
int equ,var;
while (scanf("%d %d", &equ, &var) != EOF){
memset(a, 0, sizeof(a));
for (i = 0; i < equ; i++){
for (j = 0; j < var + 1; j++){
scanf("%d", &a[i][j]);
}
}
int free_num = Gauss(equ,var);
if (free_num == -1) printf("无解!\n");
else if (free_num == -2) printf("有浮点数解,无整数解!\n");
else if (free_num > 0){
printf("无穷多解! 自由变元个数为%d\n", free_num);
for (i = 0; i < var; i++){
if (free_x[i]) printf("x%d 是不确定的\n", i + 1);
else printf("x%d: %d\n", i + 1, x[i]);
}
}else{
for (i = 0; i < var; i++){
printf("x%d: %d\n", i + 1, x[i]);
}
}
printf("\n");
}
return 0;
}