机器学习-环境配置2

这篇博客介绍了如何在环境中安装CUDA 8.0和cuDNN5,用于支持PyTorch 0.3.1和TensorFlow 1.2。通过conda和pip命令进行安装,并提供了cuda下载地址。配置过程中,可能需要手动下载并放置文件到相应目录,同时解决了numpy版本过高导致的问题。
摘要由CSDN通过智能技术生成

机器学习-环境配置2

  • Python 2.7.12
  • Pytorch 0.3.1
  • CUDA 8.0
  • NLTK 3.3
  • Java 1.8.0

1.使用couda安装环境

简单步骤与上次前面的步骤一样,这里从安装cuda8.0开始记录

 conda install cudatoolkit=8.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/   --安装cuda8.0

pip install http://download.pytorch.org/whl/cu80/torch-0.3.1-cp27-cp27mu-linux_x86_64.whl  --安装torch

https://ptorch.com/news/145.html

pip install nltk==3.3 --安装nltk3.3

cuda下载地址:https://developer.nvidia.com/cuda-toolkit-archive

 

2.配置cuda8.0+cudnn5

tensorflow1.2版本需要cuda8.0+cudnn

问题:每次配置虚拟环境的时候&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值