排序算法介绍

1. 排序算法的介绍

  • 排序算法(Sort Algorithm),是将一组数据,依指定的顺序进行排列的过程。

2. 排序的分类

  • 内部排序:指将需要处理的所有数据都加载到内部存储器中进行排序
  • 外部排序:数据量过大,无法全部加载到内存中,需要借助外部存储进行排序
  • 常见的排序算法分类

在这里插入图片描述

3. 算法的时间复杂度

3.1 度量一个算法执行时间的两种方法

  1. 事后统计的方法
    这种方法可行, 但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素, 这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。
  2. 事前估算的方法
    通过分析某个算法的时间复杂度来判断哪个算法更优.

3.2 时间频度

  • 时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
  1. 举例说明-基本案例
  • 比如计算1-100所有数字之和, 我们设计两种算法:

在这里插入图片描述

  • T(n)=n+1

在这里插入图片描述

  • T(n)=1
  1. 举例说明-忽略常数项

在这里插入图片描述

在这里插入图片描述

  • 结论:
    2n+20 和 2n 随着n 变大,执行曲线无限接近, 20可以忽略
    3n+10 和 3n 随着n 变大,执行曲线无限接近, 10可以忽略
  1. 举例说明-忽略低次项

在这里插入图片描述

在这里插入图片描述

  • 结论:
    2n^2+3n+10 和 2n^2 随着n 变大, 执行曲线无限接近, 可以忽略 3n+10
    n^2+5n+20 和 n^2 随着n 变大,执行曲线无限接近, 可以忽略 5n+20
  1. 举例说明-忽略系数

在这里插入图片描述

在这里插入图片描述

  • 结论:
    随着n值变大,5n^2+7n 和 `3n^2 + 2n ,执行曲线重合, 说明 这种情况下, 5和3可以忽略。
    而n^3+5n 和 6n^3+4n ,执行曲线分离,说明多少次方式关键

3.3 时间复杂度

  • 一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作 T(n)=O( f(n) ),称O( f(n) ) 为算法的渐进时间复杂度,简称时间复杂度。
  • T(n) 不同,但时间复杂度可能相同。 如:T(n)=n²+7n+6 与 T(n)=3n²+2n+2 它们的T(n) 不同,但时间复杂度相同,都为O(n²)。
  • 计算时间复杂度的方法:
  1. 用常数1代替运行时间中的所有加法常数 T(n)=n²+7n+6 => T(n)=n²+7n+1
  2. 修改后的运行次数函数中,只保留最高阶项 T(n)=n²+7n+1 => T(n) = n²
  3. 去除最高阶项的系数 T(n) = n² => T(n) = n² => O(n²)

3.4 常见的时间复杂度

  1. 常数阶O(1)
  2. 对数阶O(log2n)
  3. 线性阶O(n)
  4. 线性对数阶O(nlog2n)
  5. 平方阶O(n^2)
  6. 立方阶O(n^3)
  7. k次方阶O(n^k)
  8. 指数阶O(2^n)

在这里插入图片描述

  • 说明:
  1. 常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n^2) < Ο(n^3)< Ο(n^k) < Ο(2^n) ,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低
  2. 从图中可见,我们应该尽可能避免使用指数阶的算法
  • 常数阶O(1)
    无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1)

在这里插入图片描述

上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。

  • 对数阶O(log2n)

在这里插入图片描述

说明:在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。假设循环x次之后,i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2n也就是说当循环 log2n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(log2n) 。 O(log2n) 的这个2 时间上是根据代码变化的,如果 i = i * 3 ,则是 O(log3n) .

在这里插入图片描述

  • 线性阶O(n)

在这里插入图片描述
说明:这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度

  • 线性对数阶O(nlogN)

在这里插入图片描述
说明:线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)

  • 平方阶O(n²)

在这里插入图片描述
说明:平方阶O(n²) 就更容易理解了,如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²),这段代码其实就是嵌套了2层n循环,它的时间复杂度就是 O(n * n),即 O(n²) 如果将其中一层循环的n改成m,那它的时间复杂度就变成了 O(m * n)

  • 立方阶O(n³)、K次方阶O(n^k)
    O(n³)相当于三层n循环,其它的类似

3.4 平均时间复杂度和最坏时间复杂度

  • 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。
  • 最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。
  • 平均时间复杂度和最坏时间复杂度是否一致,和算法有关.

在这里插入图片描述

  • 相关术语解释:
  1. 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;

  2. 不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;

  3. 内排序:所有排序操作都在内存中完成;

  4. 外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;

  5. 时间复杂度: 一个算法执行所耗费的时间。

  6. 空间复杂度:运行完一个程序所需内存的大小。

  7. n: 数据规模

  8. k: “桶”的个数

  9. In-place: 不占用额外内存

  10. Out-place: 占用额外内存

4. 算法的空间复杂度

  1. 类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数。
  2. 空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况
  3. 在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值