数据结构:图

1. 基本介绍

1.1 为什么要有图

  1. 线性表局限于一个直接前驱和一个直接后继的关系
  2. 树也只能有一个直接前驱也就是父节点
  3. 当要表示多对多的关系时, 就需要用图

1.2 举例说明

  • 图是一种数据结构,其中节点可以具有零个或多个相邻元素。两个节点之间的连接称为边。 节点也可以称为顶点。

在这里插入图片描述
在这里插入图片描述

1.3 常用概念

  1. 顶点(vertex)
  2. 边(edge)
  3. 路径
  4. 无向图

无向图: 顶点之间的连接没有方向,比如A-B,
即可以是 A-> B 也可以 B->A .
路径: 比如从 D -> C 的路径有
1)D->B->C
2)D->A->B->C

在这里插入图片描述

  1. 有向图

有向图: 顶点之间的连接有方向,比如A-B,
只能是 A-> B 不能是 B->A .

在这里插入图片描述

  1. 带权图

带权图:这种边带权值的图也叫网.

在这里插入图片描述

2. 图的表示方式

  • 图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。

2.1 邻接矩阵

  • 邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是的row和col表示的是1…n个点。

在这里插入图片描述

2.2 邻接表

  1. 邻接矩阵需要为每个顶点都分配n个边的空间,其实有很多边都是不存在,会造成空间的一定损失
  2. 邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成

说明:
1.标号为0的结点的相关联的结点为 1 2 3 4
2.标号为1的结点的相关联结点为0 4,
3.标号为2的结点相关联的结点为 0 4 5
4…

在这里插入图片描述

3. 深度优先遍历

3.1 图遍历介绍

  • 所谓图的遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略: (1)深度优先遍历 (2)广度优先遍历

3.2 深度优先遍历基本思想

  • 图的深度优先搜索(Depth First Search)
  1. 深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点, 可以这样理解:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。
  2. 我们可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。
  3. 显然,深度优先搜索是一个递归的过程

3.3 深度优先遍历算法步骤

  1. 访问初始结点v,并标记结点v为已访问。
  2. 查找结点v的第一个邻接结点w。
  3. 若w存在,则继续执行4,如果w不存在,则回到第1步,将从v的下一个结点继续。
  4. 若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。
  5. 查找结点v的w邻接结点的下一个邻接结点,转到步骤3。

4. 广度优先遍历

4.1 广度优先遍历基本思想

  • 图的广度优先搜索(Broad First Search) 。
  • 类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点

4.2 广度优先遍历算法步骤

  1. 访问初始结点v并标记结点v为已访问。
  2. 结点v入队列
  3. 当队列非空时,继续执行,否则算法结束。
  4. 出队列,取得队头结点u。
  5. 查找结点u的第一个邻接结点w。
  6. 若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:
    6.1 若结点w尚未被访问,则访问结点w并标记为已访问。
    6.2 结点w入队列
    6.3 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。

5. 代码实现

在这里插入图片描述

  1. 深度优先遍历顺序为 1->2->4->8->5->3->6->7
  2. 广度优先算法的遍历顺序为:1->2->3->4->5->6->7->8
package com.datastructure.;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;

public class Graph {

    // 存储顶点
    private List<String> vertexList;

    // 存储图对应的邻接矩阵
    private int[][] edges;

    // 记录某个节点是否被访问过
    private boolean[] isVisited;

    // 构造器
    public Graph(int n) {
        this.edges = new int[n][n];
        this.vertexList = new ArrayList<>(n);
    }

    // 显示图对应的矩阵
    public void showGraph() {
        for (int[] edge : edges) {
            System.out.println(Arrays.toString(edge));
        }
    }

    // 返回v1和v2的权值
    public int getWeight(int v1, int v2) {
        return edges[v1][v2];
    }

    // 插入节点
    public void insertVertex(String vertex) {
        vertexList.add(vertex);
    }

    // 添加边
    public void insertEdge(int v1, int v2, int weight) {
        edges[v1][v2] = weight;
        edges[v2][v1] = weight;
    }

    // 得到第一个邻接节点的下标 w,如果不存在则返回-1
    public int getFirstNeighbor(int index) {
        for (int i = 0; i < vertexList.size(); i++) {
            if (edges[index][i] > 0) {
                return i;
            }
        }
        return -1;
    }

    // 根据前一个邻接节点的下标获取下一个邻接节点
    public int getNextNeighbor(int v1, int v2) {
        for (int i = v2 + 1; i < vertexList.size(); i++) {
            if (edges[v1][i] > 0) {
                return i;
            }
        }
        return -1;
    }

    // 对一个节点机型深度优先遍历
    private void dfsOne(boolean[] isVisited, int i) {
        System.out.print(vertexList.get(i) + "->");
        // 将节点设置为已经访问
        isVisited[i] = true;
        // 查找节点 i 的第一个邻接节点 w
        int w = getFirstNeighbor(i);
        while (w != -1) { // 说明有
            // w 节点没有被访问过,则访问 w 节点
            if (!isVisited[w]) {
                dfsOne(isVisited, w);
            }
            // 如果 w 节点已经被访问过,则访问 w 的下一个邻接节点
            w = getNextNeighbor(i, w);
        }
    }

    // dfs遍历所有节点
    public void dfs() {
        isVisited = new boolean[vertexList.size()];
        // 遍历所有节点,进行dfs回溯
        for (int i = 0; i < vertexList.size(); i++) {
            if (!isVisited[i]) {
                dfsOne(isVisited, i);
            }
        }
    }

    // 对一个节点进行广度优先遍历
    private void bfsOne(boolean[] isVisited, int i) {
        // 表示队列头节点下标
        int u;
        // 邻接节点w
        int w;
        // 队列,记录节点访问的顺序
        LinkedList<Integer> queue = new LinkedList<>();
        // 访问节点,输出节点信息
        System.out.print(vertexList.get(i) + "=>");
        // 标记为已访问
        isVisited[i] = true;
        // 将节点加入队列
        queue.addLast(i);
        while (!queue.isEmpty()) {
            // 取出队列头节点的下标
            u = queue.removeFirst();
            // 得到第一个邻接节点下标 w
            w = getFirstNeighbor(u);
            // 找到
            while (w != -1) {
                // 是否访问过
                if (!isVisited[w]) {
                    System.out.print(vertexList.get(w) + "=>");
                    // 标记为已访问
                    isVisited[w] = true;
                    // 入队列
                    queue.addLast(w);
                }
                // 以u为前驱节点,找w后面的下一个邻接节点
                w = getNextNeighbor(u, w);
            }
        }
    }

    // 广度优先遍历所有节点
    public void bfs() {
        isVisited = new boolean[vertexList.size()];
        for (int i = 0; i < vertexList.size(); i++) {
            if (!isVisited[i]) {
                bfsOne(isVisited, i);
            }
        }
    }

    public static void main(String[] args) {
        int n = 8;
        String[] vertexs = {"1", "2", "3", "4", "5", "6", "7", "8"};
        Graph graph = new Graph(n);
        // 添加顶点
        for (String vertex : vertexs) {
            graph.insertVertex(vertex);
        }
        // 更新顶点之间的关系
        graph.insertEdge(0, 1, 1);
        graph.insertEdge(0, 2, 1);
        graph.insertEdge(1, 3, 1);
        graph.insertEdge(1, 4, 1);
        graph.insertEdge(3, 7, 1);
        graph.insertEdge(4, 7, 1);
        graph.insertEdge(2, 5, 1);
        graph.insertEdge(2, 6, 1);
        graph.insertEdge(5, 6, 1);
        // 显示邻接矩阵
        graph.showGraph();
        System.out.println("深度优先遍历");
        graph.dfs();
        System.out.println();
        System.out.println("广度优先遍历");
        graph.bfs();
    }

}
  • 结果打印
[0, 1, 1, 0, 0, 0, 0, 0]
[1, 0, 0, 1, 1, 0, 0, 0]
[1, 0, 0, 0, 0, 1, 1, 0]
[0, 1, 0, 0, 0, 0, 0, 1]
[0, 1, 0, 0, 0, 0, 0, 1]
[0, 0, 1, 0, 0, 0, 1, 0]
[0, 0, 1, 0, 0, 1, 0, 0]
[0, 0, 0, 1, 1, 0, 0, 0]
深度优先遍历
1->2->4->8->5->3->6->7->
广度优先遍历
1=>2=>3=>4=>5=>6=>7=>8=>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值