目录
1. 基本介绍
1.1 为什么要有图
- 线性表局限于一个直接前驱和一个直接后继的关系
- 树也只能有一个直接前驱也就是父节点
- 当要表示多对多的关系时, 就需要用图
1.2 举例说明
- 图是一种数据结构,其中节点可以具有零个或多个相邻元素。两个节点之间的连接称为边。 节点也可以称为顶点。
1.3 常用概念
- 顶点(vertex)
- 边(edge)
- 路径
- 无向图
无向图: 顶点之间的连接没有方向,比如A-B,
即可以是 A-> B 也可以 B->A .
路径: 比如从 D -> C 的路径有
1)D->B->C
2)D->A->B->C
- 有向图
有向图: 顶点之间的连接有方向,比如A-B,
只能是 A-> B 不能是 B->A .
- 带权图
带权图:这种边带权值的图也叫网.
2. 图的表示方式
- 图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。
2.1 邻接矩阵
- 邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是的row和col表示的是1…n个点。
2.2 邻接表
- 邻接矩阵需要为每个顶点都分配n个边的空间,其实有很多边都是不存在,会造成空间的一定损失
- 邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成
说明:
1.标号为0的结点的相关联的结点为 1 2 3 4
2.标号为1的结点的相关联结点为0 4,
3.标号为2的结点相关联的结点为 0 4 5
4…
3. 深度优先遍历
3.1 图遍历介绍
- 所谓图的遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略: (1)深度优先遍历 (2)广度优先遍历
3.2 深度优先遍历基本思想
- 图的深度优先搜索(Depth First Search)
- 深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点, 可以这样理解:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。
- 我们可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。
- 显然,深度优先搜索是一个递归的过程
3.3 深度优先遍历算法步骤
- 访问初始结点v,并标记结点v为已访问。
- 查找结点v的第一个邻接结点w。
- 若w存在,则继续执行4,如果w不存在,则回到第1步,将从v的下一个结点继续。
- 若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。
- 查找结点v的w邻接结点的下一个邻接结点,转到步骤3。
4. 广度优先遍历
4.1 广度优先遍历基本思想
- 图的广度优先搜索(Broad First Search) 。
- 类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点
4.2 广度优先遍历算法步骤
- 访问初始结点v并标记结点v为已访问。
- 结点v入队列
- 当队列非空时,继续执行,否则算法结束。
- 出队列,取得队头结点u。
- 查找结点u的第一个邻接结点w。
- 若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:
6.1 若结点w尚未被访问,则访问结点w并标记为已访问。
6.2 结点w入队列
6.3 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。
5. 代码实现
- 深度优先遍历顺序为 1->2->4->8->5->3->6->7
- 广度优先算法的遍历顺序为:1->2->3->4->5->6->7->8
package com.datastructure.图;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
public class Graph {
// 存储顶点
private List<String> vertexList;
// 存储图对应的邻接矩阵
private int[][] edges;
// 记录某个节点是否被访问过
private boolean[] isVisited;
// 构造器
public Graph(int n) {
this.edges = new int[n][n];
this.vertexList = new ArrayList<>(n);
}
// 显示图对应的矩阵
public void showGraph() {
for (int[] edge : edges) {
System.out.println(Arrays.toString(edge));
}
}
// 返回v1和v2的权值
public int getWeight(int v1, int v2) {
return edges[v1][v2];
}
// 插入节点
public void insertVertex(String vertex) {
vertexList.add(vertex);
}
// 添加边
public void insertEdge(int v1, int v2, int weight) {
edges[v1][v2] = weight;
edges[v2][v1] = weight;
}
// 得到第一个邻接节点的下标 w,如果不存在则返回-1
public int getFirstNeighbor(int index) {
for (int i = 0; i < vertexList.size(); i++) {
if (edges[index][i] > 0) {
return i;
}
}
return -1;
}
// 根据前一个邻接节点的下标获取下一个邻接节点
public int getNextNeighbor(int v1, int v2) {
for (int i = v2 + 1; i < vertexList.size(); i++) {
if (edges[v1][i] > 0) {
return i;
}
}
return -1;
}
// 对一个节点机型深度优先遍历
private void dfsOne(boolean[] isVisited, int i) {
System.out.print(vertexList.get(i) + "->");
// 将节点设置为已经访问
isVisited[i] = true;
// 查找节点 i 的第一个邻接节点 w
int w = getFirstNeighbor(i);
while (w != -1) { // 说明有
// w 节点没有被访问过,则访问 w 节点
if (!isVisited[w]) {
dfsOne(isVisited, w);
}
// 如果 w 节点已经被访问过,则访问 w 的下一个邻接节点
w = getNextNeighbor(i, w);
}
}
// dfs遍历所有节点
public void dfs() {
isVisited = new boolean[vertexList.size()];
// 遍历所有节点,进行dfs回溯
for (int i = 0; i < vertexList.size(); i++) {
if (!isVisited[i]) {
dfsOne(isVisited, i);
}
}
}
// 对一个节点进行广度优先遍历
private void bfsOne(boolean[] isVisited, int i) {
// 表示队列头节点下标
int u;
// 邻接节点w
int w;
// 队列,记录节点访问的顺序
LinkedList<Integer> queue = new LinkedList<>();
// 访问节点,输出节点信息
System.out.print(vertexList.get(i) + "=>");
// 标记为已访问
isVisited[i] = true;
// 将节点加入队列
queue.addLast(i);
while (!queue.isEmpty()) {
// 取出队列头节点的下标
u = queue.removeFirst();
// 得到第一个邻接节点下标 w
w = getFirstNeighbor(u);
// 找到
while (w != -1) {
// 是否访问过
if (!isVisited[w]) {
System.out.print(vertexList.get(w) + "=>");
// 标记为已访问
isVisited[w] = true;
// 入队列
queue.addLast(w);
}
// 以u为前驱节点,找w后面的下一个邻接节点
w = getNextNeighbor(u, w);
}
}
}
// 广度优先遍历所有节点
public void bfs() {
isVisited = new boolean[vertexList.size()];
for (int i = 0; i < vertexList.size(); i++) {
if (!isVisited[i]) {
bfsOne(isVisited, i);
}
}
}
public static void main(String[] args) {
int n = 8;
String[] vertexs = {"1", "2", "3", "4", "5", "6", "7", "8"};
Graph graph = new Graph(n);
// 添加顶点
for (String vertex : vertexs) {
graph.insertVertex(vertex);
}
// 更新顶点之间的关系
graph.insertEdge(0, 1, 1);
graph.insertEdge(0, 2, 1);
graph.insertEdge(1, 3, 1);
graph.insertEdge(1, 4, 1);
graph.insertEdge(3, 7, 1);
graph.insertEdge(4, 7, 1);
graph.insertEdge(2, 5, 1);
graph.insertEdge(2, 6, 1);
graph.insertEdge(5, 6, 1);
// 显示邻接矩阵
graph.showGraph();
System.out.println("深度优先遍历");
graph.dfs();
System.out.println();
System.out.println("广度优先遍历");
graph.bfs();
}
}
- 结果打印
[0, 1, 1, 0, 0, 0, 0, 0]
[1, 0, 0, 1, 1, 0, 0, 0]
[1, 0, 0, 0, 0, 1, 1, 0]
[0, 1, 0, 0, 0, 0, 0, 1]
[0, 1, 0, 0, 0, 0, 0, 1]
[0, 0, 1, 0, 0, 0, 1, 0]
[0, 0, 1, 0, 0, 1, 0, 0]
[0, 0, 0, 1, 1, 0, 0, 0]
深度优先遍历
1->2->4->8->5->3->6->7->
广度优先遍历
1=>2=>3=>4=>5=>6=>7=>8=>