本文是学习brady neal于2020年开设的因果推断课程Introduction to Causal Inference的记录
概述
本chapter主要分四个部分:
- 辛普森悖论
- 为什么相关性不是因果关系
- 什么展示了因果关系
- 在观测性研究中如何发现因果关系
1 因果推断的动机:辛普森悖论
1.1 辛普森悖论案例
辛普森悖论(Simpson‘s paradox)是广泛存在于统计学事件的一个现象,指的是分组下的统计表现与总体统计表现相悖。
这里举了一个例子,假设有一个新的疾病:COVID-27
有两种针对性的疗法 T T T:A(0)和B(1)
以及病情症状 C C C:轻微(0)或者严重(1)
可能的结果 Y Y Y:痊愈(0)或者死亡(1)
关于它的统计结果如下
此时我们会发现一个辛普森悖论,就是,忽略基数,只看人数,我们会发现总的来说使用A的死亡率更低,但是对每一个分组来说,又是使用B的效果更好。
对于总体的死亡率计算式如下
1.2 可能的解释
事实上,上述案例中 T T T, C C C, Y Y Y三者的关系,可以通过因果图(causal graph)来表示。
应该用怎样的因果图来表示呢?
这里对出现辛普森悖论的原因进行一些可能的解释
-
解释1
从数据基数上看, 医生可能更愿意给重症患者使用B治疗方法,这可能是因为B的医疗资源更加紧缺。
为什么B中的死亡人数更多, 是因为使用B的患者中重症患者的比例更高;而A更多地被用在症状较轻的病人身上。
在这个解释中,病人的症状 C C C是采取治疗方法 T T T的一种主要的原因。
则因果图如下
-
解释2
也有可能是B是处方药,很稀少,要等待,而且等待会使得病情恶化。
而接受治疗方法A,则可能不会对病情有影响,因此大部分的人在轻症阶段就得到了救治。
在这个解释中,治疗方法 T T T是导致病情 C C C的一个原因。
则因果图如下
2 相关关系≠因果关系
2.1 案例:穿鞋和头疼
单从数据关系上看,穿着鞋子睡觉的人很多醒来都头痛,穿鞋的人大多前天晚上喝了酒,而不穿鞋的人大多前天晚上没有喝酒,我们可以统计两组人中喝酒的人数中得出来这个结论。
我们知道头疼的原因不是因为穿着鞋睡觉,但是数据却告诉我们穿着鞋睡觉的人大多醒来的时候头疼。
这是因为穿鞋睡觉的组和不穿鞋睡觉的组在关键条件上(即睡前有无喝酒)不同,他们不具有可比性,所以这两个组不能直接说明因果关系。
我们把这个现象叫做混淆(confounding),这个词需要划重点。
我们没有办法让喝醉酒的人必须把鞋脱了睡觉,也就是我们无法让两组完全一样,因此没有办法确定一个单独的因果关系。
事实上我们所观测到的结果是因果关系和混杂关联的组合。
2.2 相关关系≠因果关系!
我们虽然很清楚关联性和因果关系是不等同的,但还是习惯上会有认知偏见。
回到这个头疼的案例上,如果不是像这种非常明显与头疼无关的因素(如穿鞋),我们很有可能还是会习惯性的把头疼归因到这个因素上。
这是因为我们在现实生活中所作的推断可能收到我们信息认知的影响,或者是我们进行了有动机的推理。
再用一个具体的案例来说明相关关系与因果关系的不等同,比如
看了电影nicolas cage的人的统计数量,和水池里溺死的人的统计数量变化趋势一致