pyCharm最新激活方式

破解补丁激活
优点:到期时间为2099年,基本为永久啦

缺点:相对服务器激活麻烦些,但是一共只需要3个步骤,其实并不麻烦

下载 https://pan.baidu.com/s/1mcQM8CLUnweY02ahKEr4PQ 并将 JetbrainsCrack-release-enc.jar 放置到 pycharm安装目录的\bin目录下(位置可随意,只要配置文件填写相对应的路径)。

在 Pycharm安装目录的\bin目录下找到 pycharm.exe.vmoptions 和 pycharm64.exe.vmoptions ,以文本格式打开并同时在两个文件最后追加  -javaagent:D:\你pycharm的安装路径\bin\JetbrainsCrack-release-enc.jar,注意路径修改成你的pycharm安装路径,然后保存。

启动Pycharm ,选择激活码激活,输入如下内容激活

 
ThisCrackLicenseId-{
"licenseId":"11011",
"licenseeName":"WeChat",
"assigneeName":"IT--Pig",
"assigneeEmail":"1113449881@qq.com",
"licenseRestriction":"",
"checkConcurrentUse":false,
"products":[
{"code":"II","paidUpTo":"2099-12-31"},
{"code":"DM","paidUpTo":"2099-12-31"},
{"code":"AC","paidUpTo":"2099-12-31"},
{"code":"RS0","paidUpTo":"2099-12-31"},
{"code":"WS","paidUpTo":"2099-12-31"},
{"code":"DPN","paidUpTo":"2099-12-31"},
{"code":"RC","paidUpTo":"2099-12-31"},
{"code":"PS","paidUpTo":"2099-12-31"},
{"code":"DC","paidUpTo":"2099-12-31"},
{"code":"RM","paidUpTo":"2099-12-31"},
{"code":"CL","paidUpTo":"2099-12-31"},
{"code":"PC","paidUpTo":"2099-12-31"}
],
"hash":"2911276/0",
"gracePeriodDays":7,
"autoProlongated":false}

 

### YOLOv11 PyCharm 使用教程及配置方法 #### 创建 Python 虚拟环境 为了确保开发环境的独立性和稳定性,在 Windows 11 上可以使用 Anaconda 来管理依赖项并创建虚拟环境。通过以下命令来建立名为 `PyTorch` 的新环境,并指定 Python 版本为 3.9: ```bash conda create -n PyTorch python=3.9 [^1] ``` 激活该环境以便后续安装所需的库文件和其他工具。 #### 安装必要的软件包 进入刚刚创建好的环境中,接着按照官方文档或其他可靠资源指导完成 PyTorch 及其相关组件的部署工作。对于计算机视觉项目来说,可能还需要额外引入 OpenCV 或者其他图像处理类库支持。 #### 配置 PyCharm IDE 启动 PyCharm 后,前往设置页面找到解释器选项卡,点击齿轮图标选择“Add”,之后挑选 Conda Environment 下拉菜单里的 Existing environment ,浏览至之前所建的 `PyTorch` 环境路径下对应的 Python 解释程序位置进行关联绑定操作。 #### 加载预训练模型与数据集准备 针对 YOLOv11 进行实验前,需先下载对应版本框架源码以及权重参数;与此同时准备好用于测试的数据集合,比如 COCO 数据集等公开可用的选择或是自定义采集整理而成的小规模样本集。 #### 编写检测脚本实例 下面给出一段简单的代码片段作为参考,展示如何加载已有的 YOLO 模型来进行目标识别任务: ```python import torch from models.experimental import attempt_load from utils.general import non_max_suppression, scale_coords from PIL import ImageDraw def detect_objects(image_path): device = 'cuda' if torch.cuda.is_available() else 'cpu' model = attempt_load('yolov11.pt', map_location=device) img = ... # Load image here results = model(img)[0] pred = non_max_suppression(results, conf_thres=0.4, iou_thres=0.5) draw = ImageDraw.Draw(img) for det in pred[0]: xyxy = (det[:4]).tolist() label = f'{model.names[int(det[-1])]} {float(det[4]):.2f}' draw.rectangle(xyxy, outline="red", width=3) draw.text((xyxy[0], xyxy[1]), label, fill="white") img.show() detect_objects("path/to/image.jpg") ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值