买卖股票的最佳时机

股票买卖问题可以有一个统一的模板解决,具体来看,每天都有三个状态:第i天,允许交易次数k,是否持有

于是我们为每天的状态标记,有

dp[i][k][1] = max( dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])

dp[i][k][0] = max( dp[i-1][k][1] + prices[i], dp[i-1][k][0])

为什么一定要在买入的这天记一次交易(k-1)呢,这是因为,如果是第0天的话,我们无法进行卖出操作,

而只能进行买入操作,将买入操作记为一次交易,这样写的式子更加具有一般形式。

原文题的等价问题是第n天卖掉和第n天不卖掉两种情况取大者,

第i天如果不卖掉,则第i天最大利润dp[i] = dp[i-1]

第i天如果卖掉,则第i天最大利润dp[i] 为当前股票价格prices[i]-之前最小的价格

将两者进行比较取最大值即为最大利润。

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        len_prices = len(prices)
        if len_prices <= 1:
            return 0
        dp = [0]*len_prices
        dp[0] = 0
        min_price = prices[0]
        for i in range(1, len_prices):
            min_price = min(min_price, prices[i])
            dp[i] = max(prices[i]-min_price, dp[i-1]) # 在第i天卖或不卖股票进行比较
        return dp[-1]

法二:

利用统一模板

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        len_prices = len(prices)
        if len_prices <= 1:
            return 0
        dp = [[0]*2 for _ in range(len_prices)]
        dp[0][1] = -prices[0]
        dp[0][0] = 0
        for i in range(1, len_prices):
           dp[i][1] = max(dp[i-1][1], -prices[i])
           dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])

        return dp[-1][0]

 

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        len_prices = len(prices)
        if len_prices <= 1:
            return 0
        dp = [[0]*2 for _ in range(len_prices)]
        dp[0][1] = -prices[0]
        dp[0][0] = 0
        for i in range(1, len_prices):
            dp[i][1] = max(dp[i-1][1], dp[i-1][0]-prices[i])
            dp[i][0] = max(dp[i-1][0], dp[i-1][1]+prices[i])
        return dp[-1][0]

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        len_prices = len(prices)
        if len_prices <= 1:
            return 0
        dp = [[0]*2 for _ in range(len_prices)]
        dp[0][0] = 0
        dp[0][1] = -prices[0]
        dp[1][0] = max(prices[1] - prices[0], 0)
        dp[1][1] = max(-prices[0], -prices[1])
        for i in range(2, len_prices):
            dp[i][1] = max(dp[i-1][1], dp[i-2][0]-prices[i])
            dp[i][0] = max(dp[i-1][0], dp[i-1][1]+prices[i])
        return dp[-1][0]

class Solution:
    def maxProfit(self, prices: List[int], fee: int) -> int:
        len_prices = len(prices)
        if len_prices <= 1:
            return 0
        dp = [[0]*2 for _ in range(len_prices)]
        dp[0][1] = -prices[0]
        dp[0][0] = 0
        for i in range(1, len_prices):
            dp[i][1] = max(dp[i-1][1], dp[i-1][0]-prices[i])
            dp[i][0] = max(dp[i-1][0], dp[i-1][1]+prices[i]-fee)
        return dp[-1][0]

化简使用dp table的大小,由于每次更新的状态都只和相邻状态有关,所以改写如下

class Solution:
    def maxProfit(self, prices: List[int], fee: int) -> int:
        len_prices = len(prices)
        if len_prices <= 1:
            return 0
        dp_i_0 = 0
        dp_i_1 = -float('inf')
        for i in range(0, len_prices):
            dp_i_1 = max(dp_i_1, dp_i_0-prices[i])
            dp_i_0 = max(dp_i_0, dp_i_1+prices[i]-fee)
        return dp_i_0

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        len_prices = len(prices)
        if len_prices <= 1:
            return 0
        dp_i_10 = 0
        dp_i_11 = -float('inf')
        dp_i_20 = 0
        dp_i_21 = -float('inf')
        for i in range(0, len_prices):
            dp_i_11 = max(dp_i_11, -prices[i])
            dp_i_10 = max(dp_i_10, dp_i_11+prices[i])
            dp_i_21 = max(dp_i_21, dp_i_10-prices[i])
            dp_i_20 = max(dp_i_20, dp_i_21+prices[i])
        return dp_i_20

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值