数学知识补充 - 向量空间

数学知识补充 - 向量空间

主要是对《all the mathmatics you missed》 的翻译和自身理解。

1.0 Preference

线性代数主要研究线性变化线性空间,或者说是矩阵乘法向量空间 R n R^n Rn. 我们应该学到如何在抽象的线性空间的相关概念和矩阵的相关概念相互转换。比如说,给定一个线性空间的基,我们应该能够把其上的所有线性变换表示为矩阵。此外,我们能够明确关于不同的基的矩阵表示的是同一线性变换。关于矩阵可逆的等价关系是线性代数中一个重要的定理,应该被熟知。我们也要知道为什么线性代数中要有特征值和特征向量的概念。

1.1 Introduction

一个数学问题只有在线性代数中简化为计算才能得到解决。线性代数中的计算最终将归结为求解一组线性方程组,而这又归结为矩阵的操作。

线性代数的作用不仅在于我们能够使用矩阵来解线性方程组。将一些些具体对象抽象为向量空间和线性变换的概念,使我们能够看到许多看似不同的主题之间的共同概念联系。(这是任何好的抽象方法都具备的优点。)例如,因为线性微分方程的解空间和汽车引擎盖模型的三次多项式空间都是向量空间,研究线性微分方程的解,在某种程度上,就像试图用三次多项式来模拟汽车引擎盖一样。

1.2 The Basic Vector Space R n R^n Rn

R n R^n Rn 是最典型的的向量空间,他是所有实数n元组的集合:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FoOZ2xlc-1599381902337)(C:\Users\nicow\AppData\Local\Temp\1599372600706.png)]

正如我们将在下一节中看到的,使这成为向量空间的原因是

  1. 任意两个n元组(n-tuple)的加减,在 R n R^n Rn上封闭。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KE89wJ41-1599381902341)(C:\Users\nicow\AppData\Local\Temp\1599372627379.png)]

  1. 任意元组的数乘结果,在 R n R^n Rn上封闭

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZfIVTmwm-1599381902344)(C:\Users\nicow\AppData\Local\Temp\1599372641864.png)]

当然,每个n元组(n-tuple)通常称为向量,实数 λ \lambda λ被称为称为标量(scalars)。

通过矩阵乘法给出了从某个 R n 到 R m R^n到R^m RnRm的自然映射。将向量 x ∈ R n x\in R^n xRn写成列向量

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fpk0aT3a-1599381902346)(C:\Users\nicow\AppData\Local\Temp\1599372659981.png)]

类似地,我们可以在 R m R^m Rm中编写一个向量,作为一个包含m个条目的列向量。设A为m×n矩阵[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-t7zneBpd-1599381902348)(C:\Users\nicow\AppData\Local\Temp\1599372674604.png)]

那么Ax是m元组:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XGGx4tXk-1599381902350)(C:\Users\nicow\AppData\Local\Temp\1599372692520.png)]

对于R n中的任意两个向量x和y以及任意两个标量。还有 λ 和 μ \lambda和\mu λμ,我们有

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-buwZE3d3-1599381902352)(C:\Users\nicow\AppData\Local\Temp\1599372703584.png)]

在下一节中,我们将使用矩阵乘法的线性来定义向量空间之间的线性变换。

现在把所有这些都和线性方程组的求解联系起来。假设我们得到了 b 1 , . . . , b m 和 a 11 , . . . , a m n b_1,...,b_m和a_{11},...,a_{mn} b1,...,bma11,...,amn。我们的目标是找到n个数字 x 1 , . . . , x n x_1,...,x_n x1,...,xn,用于求解以下线性方程组:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-B0W91MMK-1599381902353)(C:\Users\nicow\AppData\Local\Temp\1599372805922.png)]

线性代数中的计算常常会简化为求解一组线性方程组。当只有几个方程时,我们可以用手找到解,但随着方程数量的增加,计算很快就从令人愉快的代数操作变成了抄写大段公式的噩梦。这些噩梦般的复杂情况并不是来自于任何一个理论上的困难,而是仅仅源于试图保证不会你在写的过程中不会烦躁而且不会因为大意而写错一些细节。换句话说,这是手写中的一个问题。

我们可以用更具视觉吸引力的形式重写我们的线性方程组

A x = b Ax=b Ax=b

当m>n时(当方程组多于未知数时),我们通常期望没有解。例如,当m=3和n=2时,这在几何上对应于一个平面上的三条直线通常有没有共同的交点。在m=2和n=3的情况下,这在几何上对应于这样一个事实:空间中的两个平面通常在一条直线上相交。当m<n时(方程数小于未知数时),我们通常期望有多个解。在m=2和n=3的情况下,这在几何上对应于这样一个事实:空间中的两个平面通常在一条直线上相交。通常我们处理m=n的情况。

因此我们要找到求解 A x = b 的 n × 1 的 列 向 量 x , 其 中 A 是 给 定 的 n × n 矩 阵 , b 是 给 定 的 n × 1 列 向 量 。 Ax=b的n\times 1的列向量x,其中A是给定的n\times n矩阵,b是给定的n\times 1列向量。 Ax=bn×1xAn×nbn×1

假设方阵A有一个逆矩阵 A − 1 ( 这 意 味 着 A − I 也 是 n × n , 更 重 要 的 是 A − 1 A = I , 其 中 I 是 单 位 矩 阵 ) A^{-1}(这意味着A^{-I}也是n\times n,更重要的是A^{-1}A=I,其中I是单位矩阵) A1AIn×nA1A=II。那么我们的解决方案是

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-II4bNNrc-1599381902355)(C:\Users\nicow\AppData\Local\Temp\1599373062368.png)]

求解我们的线性方程组就可以理解nxn矩阵A的逆。如果存在一个逆矩阵,那么就有计算它的算法。

线性代数的关键定理,如第六节所述,本质上是当一个n×n矩阵有一个逆时的许多等价关系,因此对于理解一个线性方程组何时可以求解是必不可少的。

1.3 Vector Spaces and Linear Transformations

研究线性方程组的抽象方法从向量空间的概念开始。

定义1.3.1:

​ 集合V是关于实数R的向量空间,如果存在映射满足:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-k091Ktzs-1599381902356)(C:\Users\nicow\AppData\Local\Temp\1599373146595.png)]

具有以下属性:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FW924oow-1599381902359)(C:\Users\nicow\AppData\Local\Temp\1599373163635.png)]

为了符合一般用法,向量空间的元素称为向量(vector),而R标量的元素被称为标量(scalar)。向量空间之间的自然映射是线性变换的映射。

定义1.3.2

线性变换 T: V->W是一个从向量空间V到向量空间W的函数,对于任何实数 a l 和 a 2 以 及 V 中 的 任 何 向 量 V I 和 V 2 a_l和a_2以及V中的任何向量V_I和V_2 ala2VVIV2,我们都有

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vbECSnWj-1599381902361)(C:\Users\nicow\AppData\Local\Temp\1599373244012.png)]

R n 到 R m R^n到R^m RnRm的矩阵乘法给出了一个线性变换的例子。

定义1.3.3

U 是 向 量 空 间 V 的 子 集 , 如 果 U 本 身 是 向 量 空 间 , 则 它 是 V 的 子 空 间 。 U是向量空间V的子集,如果U本身是向量空间,则它是V的子空间。 UVUV

命题1.3.1

向 量 空 间 V 的 子 集 U 是 V 的 子 空 间 , 如 果 U 在 加 法 和 标 量 乘 法 下 是 封 闭 ( c l o s e d ) 的 。 向量空间V的子集U是V的子空间,如果U在加法和标量乘法下是封闭(closed)的。 VUVUclosed

给 定 一 个 线 性 变 换 T : V → W , V 和 W 都 有 自 然 产 生 的 子 空 间 。 给定一个线性变换T:V\rightarrow W,V和W都有自然产生的子空间。 线T:VWVW

定义1.3.4

如果 T : V → W T:V\rightarrow W T:VW是线性变换,则kernel of T为:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cZq7jmBi-1599381902362)(C:\Users\nicow\AppData\Local\Temp\1599373536159.png)]

image of T 为:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-i0XYxmHd-1599381902364)(C:\Users\nicow\AppData\Local\Temp\1599373545042.png)]

核 是 V 的 子 空 间 , 因 为 如 果 V 1 和 V 2 是 核 中 的 两 个 向 量 , 如 果 a 和 b 是 任 意 两 个 实 数 , 那 么 核是V的子空间,因为如果V_1和V_2是核中的两个向量,如果a和b是任意两个实数,那么 VV1V2ab

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KbXeeS6O-1599381902365)(C:\Users\nicow\AppData\Local\Temp\1599373597448.png)]

interpret:说明了 a v 1 + b v 2 av_1+bv_2 av1+bv2对于kernel是封闭的,也就是说核是一个向量空间。

同样地,我们可以证明T的像是W的子空间。

当然向量空间的并不只对应着 R n R^n Rn中的列向量的集合。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WMeCRCyM-1599381902366)(C:\Users\nicow\AppData\Local\Temp\1599373644883.png)]

1.4 Bases, Dimension, and Linear Transformations as Matrices

我们的下一个目标是定义向量空间的维数。

定义1.4.1:

一组向量 ( v 1 , . . . , . v n ) (v_1,...,.v_n) v1,...,.vn构成向量空间V的基,如果给定V中的任何一个向量v,则有且仅有一组scalars a 1 , . . . , a n ∈ R a_1,...,a_n\in R a1,...,anR满足

v = a 1 v 1 + a 2 v 2 + . . . a n v n v=a_1v_1+a_2v_2+...a_nv_n v=a1v1+a2v2+...anvn

定义1.4.2:

向 量 空 间 V 的 维 数 用 d i m ( V ) 向量空间V的维数用dim(V) Vdim(V)表示,是基中元素的个数。

因为无论选择哪一个基,基中的元素数始终是相同的这一点远不明显,为了使向量空间维数的定义更明确,我们需要以下定理:

定理1.4.1:

向量空间V的所有基都有相同数量的元素。

R n R^n Rn的基通常是,

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ar8Uev7G-1599381902368)(C:\Users\nicow\AppData\Local\Temp\1599374489898.png)]

所以 R n 是 n R^n是n Rnn维向量空间。当然,如果这是错误的,那么我们关于维度的定义也是错误的,就需要一个其他的定义。但是,直观的理解一下,比如线是一维的,平面是二维的,空间是三维的。你看,这个定义( R n 是 n 维 向 量 R^n是n维向量 Rnn)为我们已经理解的三个例子给出了正确的答案,那么我们有点确信,这个定义确实抓住了维度的含义。然后我们可以一直使用这个定义,知道遇到直觉失败的例子。

与基概念相关的是:

定义1.4.3:

直观地说,如果一组向量指向不同的方向,它们是线性无关的。

一个基包含一组span整个向量空间的线性无关向量,其中,span是指可以线性表示其中所有向量。

我们现在的目标是展示如何将有限维空间之间的所有线性变换 T : V → W T:V\rightarrow W T:VW表示为矩阵乘法,前提是我们为向量空间V和W固定了基。

先给定一个基 v 1 , . . . , v n 代 表 V 和 基 w 1 , . . . , w m 代 表 W 。 {v_1,...,v_n}代表V和基{w1,...,w_m}代表W。 v1,...,vnVw1,...,wmW

在研究线性变换T之前,我们需要说明 n 维 空 间 V 的 每 个 元 素 是 如 何 在 R n n维空间V的每个元素是如何在R^n nVRn中表示为列向量的和 m 维 空 间 W m维空间W mW的每个元素是如何在 R m R^m Rm中表示为列向量的。

给定 V V V中的任何向量,根据基的定义,存在唯一的实数 a 1 , . . . , a n a_1,...,a_n a1,...,an,满足

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-B1TAxrNC-1599381902370)(C:\Users\nicow\AppData\Local\Temp\1599375494971.png)]

因此我们可以把v表示成列向量

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LGb2K1si-1599381902371)(C:\Users\nicow\AppData\Local\Temp\1599375557335.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1zwoj0YH-1599381902372)(C:\Users\nicow\AppData\Local\Temp\1599375576398.png)]

注意,我们已经分别在线性空间 V 和 W 中 的 向 量 , 以 及 线 性 空 间 R n 和 R m 中 的 列 向 量 V和W中的向量,以及线性空间R^n和R^m 中的列向量 VW线RnRm建立了一个对应关系。更严格地说,我们可以证明V与 R n R^n Rn同构(即存在一个一对一的,从V到 R n R^n Rn的线性变换,可以思考一下,对于任何一个 R n R^n Rn中的向量,通过它的每个元素和V的基的线性组合,可以唯一表示一个V中的线性向量), W 同 构 于 R m W同构于R^m WRm,尽管必须强调的是,实际对应只有在选择了一个基之后才存在(这意味着虽然同构存在,但它不是规范的;这实际上是一件大事,因为在实践中往往没有给我们任何依据)。

我们现在要把线性变换 T : V → W T:V\rightarrow W T:VW表示为 m × n m\times n m×n的矩阵A

对于向量空间V中的每个基向量 v i , T ( v i ) v_i, T(v_i) vi,T(vi)将是 W W W中的向量。因此存在实数 a 1 i , . . . , a m i a_{1i}, ... ,a_{mi} a1i,...,ami,满足

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RlzD7jdk-1599381902374)(C:\Users\nicow\AppData\Local\Temp\1599376210719.png)]

我们想知道线性变换T将对应于mxn矩阵

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yjTXHbK4-1599381902376)(C:\Users\nicow\AppData\Local\Temp\1599376244865.png)]

但是,在向量空间与各种列空间的对应关系下,可以看出这对应于A乘以向量v对应的列向量的矩阵乘法:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-c6LocfUc-1599381902376)(C:\Users\nicow\AppData\Local\Temp\1599376366063.png)]

注意,如果 T : V → V T:V\rightarrow V T:VV是从向量空间到它自身的线性变换,那么对应的矩阵将是nxn,一个平方矩阵。

给定向量空间V和W的不同基,与线性变换T相关的矩阵将改变。一个自然的问题是确定两个矩阵何时实际表示相同的线性变换,但在不同的基下。这将是第七节的目标。

1.5 The Determinant

我们的下一个任务是给出矩阵行列式的定义。事实上,我们将给出行列式的三种不同的描述。这三种方法都是等价的,各自都有自己的优点。

**定义1.5.1:**代数余子式

定义1.5.2:

A的行列式定义为唯一实值函数

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-G3v4NOEj-1599381902377)(C:\Users\nicow\AppData\Local\Temp\1599377329877.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TOnr24qR-1599381902378)(C:\Users\nicow\AppData\Local\Temp\1599377349435.png)]

因此,将矩阵的每一列向量视为 R n R^n Rn中的一个向量,行列式可以看作是一种从 R 1 × . . . × R n R^1 \times ... \times R n R1×...×Rn到实数的函数。

行列式的第三个定义是最几何的,但也是最模糊的。我们必须把nxn矩阵A看作是从Rn到Rn的线性变换。然后A将把 R n R^n Rn中的单位立方体映射到不同的对象(平行六面体)。根据定义,单位立方体的体积为1。

**定义1.5.4: **

矩阵A的行列式是单位立方体图像的有符号体积。

有符号体积意味着,如果单位立方体的边的方向改变了,那么体积前面一定有一个负号

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MZdyWodX-1599381902381)(C:\Users\nicow\AppData\Local\Temp\1599377691295.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bSvIj41t-1599381902382)(C:\Users\nicow\AppData\Local\Temp\1599377705200.png)]

严格定义方向有点棘手,但它的含义很简单。

行列式有许多代数性质。例如,

**引理1.5.1:**如果A和B是n×n的矩阵,那么

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bkfZrevg-1599381902384)(C:\Users\nicow\AppData\Local\Temp\1599377737298.png)]

1.6线性代数的关键定理

定理1.6.1:

设A是nxn矩阵。则以下内容等效:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vt7y567o-1599381902384)(C:\Users\nicow\AppData\Local\Temp\1599377799691.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-W7DtblqY-1599381902385)(C:\Users\nicow\AppData\Local\Temp\1599377828296.png)]

我们可以用线性变换来重申这个定理。

定理1.6.2:

T : V → V T:V\rightarrow V T:VV为线性变换。则以下内容等效:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Mpytt54x-1599381902386)(C:\Users\nicow\AppData\Local\Temp\1599377850652.png)]

为了弄清这两个定理之间的对应关系,我们必须考虑这样一个事实:我们只有矩阵的行列式和转置的定义,而不是线性变换的定义。虽然我们没有说明,但只要选择了一个基的情况下,这两个概念都可以推广到线性变换。但是请注意,虽然实际值det(T)将取决于一个固定的基,但det(T)= 0的条件不取决于。类似的陈述也适用于条件(6)和(7)。

1.7 Similar Matrices

回想一下,给定n维向量空间V的基础,我们可以表示一个线性变换 T : V → V T:V\rightarrow V TVV作为nxn 的矩阵A。不幸的是,如果为V选择不同的基,则表示线性变换T的矩阵将与原始矩阵A大不相同。本节的目标是找出两个矩阵实际代表相同线性变换但对应不同的基的简单准则

**定义1.7.1:**两个n×n矩阵A和B是相似的,如果存在可逆矩阵C,使得

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Lphgkvt2-1599381902387)(C:\Users\nicow\AppData\Local\Temp\1599378317248.png)]

我们想知道,当两个矩阵表示相同的线性变换时,它们是完全相似的。为向量空间V选择两个基,比如 v 1 , . . . v n v_1,...v_n v1,...vn(v基)和 w 1 , . . . , w n w_1,...,w_n w1,...,wn(w基)。

A A A为表示 v v v基的线性变换 T T T的矩阵, B B B为表示 w w w基的线性变换的矩阵。我们要构造矩阵C,使得 A = C − 1 B C A = C^{-1}BC A=C1BC

回想一下给定的v基,我们可以把每个向量z ∈ \in V写成一个nx1列向量,如下所示:我们知道有唯一的标量 a 1 , . . . , a n a_1,...,a_n a1,...,an使得

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KSspS1wS-1599381902389)(C:\Users\nicow\AppData\Local\Temp\1599378997004.png)]

然后我们将z,相对于v基,写成列向量:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-mpyM1V91-1599381902390)(C:\Users\nicow\AppData\Local\Temp\1599378954867.png)]

同样,也有独特的标量 b 1 , . . . , b n , 所 以 z = b 1 w 1 + . . . + b n w n b_1,...,b_n, 所以 z = b_1w_1+...+b_nw_n b1,...,bn,z=b1w1+...+bnwn,

这意味着对于w基,向量z是列向量:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RwWMmYgM-1599381902393)(C:\Users\nicow\AppData\Local\Temp\1599379080277.png)]

所需的矩阵C将是这样的矩阵:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Dy5m2jyC-1599381902393)(C:\Users\nicow\AppData\Local\Temp\1599379134414.png)]

如果是 C ( c i j ) C(c_{ij}) C(cij),那么 c i j c_{ij} cij就是产生以下结果的数字:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-iK42ITXd-1599381902394)(C:\Users\nicow\AppData\Local\Temp\1599379204775.png)]

然后,为了使A和B表示相同的线性变换,我们需要一个图:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-p76T6kQ9-1599381902395)(C:\Users\nicow\AppData\Local\Temp\1599379266239.png)]

来转换, 这意味着 C A = B C 或 意 味 着 A = C − 1 B C CA=BC或意味着A=C^{-1}BC CA=BCA=C1BC

判断两个矩阵何时相似是一种贯穿数学和物理的结果。关键的问题是:当坐标系改变时,保留了什么?相似的矩阵让我们开始理解这些问题。

1.8 Eigenvalues and Eigenvectors

在上一节中,我们看到两个矩阵在不同的基选择下代表相同的线性变换,精确地说,它们是相似的。但是,这并没有告诉我们如何为向量空间选择一个基,以便线性变换有一个特别好的矩阵表示。例如,对角线矩阵

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-mRlwnEtd-1599381902397)(C:\Users\nicow\AppData\Local\Temp\1599380368061.png)]

相似于

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-smfdKyRQ-1599381902397)(C:\Users\nicow\AppData\Local\Temp\1599380381228.png)]

但所有人都认识到A与B相比的简单性。

介绍特征值和特征向量定义的目的之一是给我们提供挑选好基的工具。不过,理解特征值和特征向量还有许多其他原因。

定义1.8.1:

T : V → V T:V\rightarrow V T:VV为线性变换。那么一个非零向量 v v v将是 T T T对应于特征值 λ \lambda λ的特征向量,如果满足

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4CRlm850-1599381902399)(C:\Users\nicow\AppData\Local\Temp\1599380535308.png)]

对于nxn矩阵A,非零列向量 x ∈ R n x \in R^n xRn 将是特征值A的特征向量,如果

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CgEynOde-1599381902400)(C:\Users\nicow\AppData\Local\Temp\1599380589201.png)]

几何上,向量v是特征值为 λ \lambda λ的线性变换T的特征向量,如果T通过因子 λ \lambda λ将v拉伸。

有一个简单的方法来描述一个方阵的特征值,这将使我们看到在相似变换下矩阵的特征值是保持不变的。

Proposition 1.8.1:

当且仅当 λ \lambda λ是多项式 P ( t ) = d e t ( t I − A ) P(t)=det(tI-A) P(t)=det(tIA)的根时, λ \lambda λ是方阵A的特征值。该多项式称为矩阵的特征多项式。

定义1.8.1:

如果A和B是相似矩阵,那么A和B的特征多项式相同。

ps:因此特征值也相同。

推论

  1. 相似矩阵的特征值相同。
  2. d e t ( A ) = A 1 × . . . × A n . det(A)=A_1\times...\times A_n. det(A)=A1×...×An.

定理1.8.3

λ \lambda λ的线性变换T的特征向量,如果T通过因子 λ \lambda λ将v拉伸。

有一个简单的方法来描述一个方阵的特征值,这将使我们看到在相似变换下矩阵的特征值是保持不变的。

Proposition 1.8.1:

当且仅当 λ \lambda λ是多项式 P ( t ) = d e t ( t I − A ) P(t)=det(tI-A) P(t)=det(tIA)的根时, λ \lambda λ是方阵A的特征值。该多项式称为矩阵的特征多项式。

定义1.8.1:

如果A和B是相似矩阵,那么A和B的特征多项式相同。

ps:因此特征值也相同。

推论

  1. 相似矩阵的特征值相同。
  2. d e t ( A ) = A 1 × . . . × A n . det(A)=A_1\times...\times A_n. det(A)=A1×...×An.

定理1.8.3

如果A是对称矩阵,那么有一个相似于A的矩阵B,它不仅是对角的,而且沿着对角线的条目正好是A的特征值。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值