MIT线性代数--向量空间

AX=b的解与A的秩的关系

b属于A的列空间,方程的解不是一个子空间,而是子空间经过平移得到的一个空间,因为这个解是由特解和零空间的特殊解构成的

A是m*n的矩阵

(r<=m,矩阵的主元最多是m行都有,就是每一行都不为零,r<=n矩阵的主元最多有n列,每列都有主元)

A可以经过一系列行初等变换得到行最简型

r=m=n:A=I 只有唯一解,没有自由变量,即零空间中没有非零向量,可以表示该空间的所有向量

r=n<m:矩阵列满秩,没有自由变量,即零空间没有非零向量,解不可能有无穷多个,,但是不能表示所有的b,所以可能没有解

r=m<n:矩阵行满秩,有自由变量,零空间有非零向量,即有特殊向量构成方程的解,因此有无穷多解

r<m且r<n:可能有无穷多解也可能没有解

 

四种子空间(AX=0 若零空间有非零向量,则该列向量组线性无关;向量空间的基:该向量组列向量线性无关,由这些向量可以生成整个向量空间;秩的定义:主元的个数,向量空间的维数,并不是向量的维数)

(若向量个数小于向量的维数,则该向量组的列向量构成该向量空间的子空间的基,若向量个数大于向量的维数,则该向量组一定线性相关,因为零空间里有非零向量,这些向量也不能构成向量空间的基,线性无关的向量的个数是空间的维数)

A是m*n 的矩阵

列空间:是Rm的子空间 因为每个向量是m维向量 子空间的维数是r,经过初等列变换,得到的主列列数就是列空间的维数

零空间:是Rn的子空间 因为零空间是由该方程的解构成的,该方程的每个解的维数是n 子空间的维数是n-r

行空间:是Rm的子空间 子空间的维数是r   经过行初等变换,行空间没有变化(只是进行了各行的线性组合,列空间发生变化)这些行向量线性无关,且由这些行向量可以线性组合得到原来的行向量,所以这些行向量构成行空间的基

左零空间:是Rm的子空间 子空间的维数是m-r

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值