机器学习系列(4)——梯度下降

梯度下降法

在回归问题的第三步中,需要解决下面的最优化问题:
θ ∗ = a r g min ⁡ θ L ( θ ) \theta^*=arg\min_\theta L(\theta) θ=argminθL(θ)

  • L:loss function(损失函数)
  • θ \theta θ:parameters(参数)

这是的parameters是复数,即 θ \theta θ指代一堆参数,比如之前说到的w和b。我们要找一组参数 θ \theta θ,让损失函数越小越好,这个问题可以用梯度下降法解决:
假设 θ \theta θ里面有两个参数 θ 1 , θ 2 \theta_1,\theta_2 θ1,θ2
在这里插入图片描述
先随机选取初始值,然后分别计算初始点处,两个参数对L的偏微分,然后 θ 0 \theta^0 θ0减掉 η \eta η乘上偏微分的值,得到一组新的参数。同理反复进行这样的计算。黄色部分即为间接写法。 ∇ L ( θ ) \nabla L(\theta) L(θ)即为梯度。 η \eta η叫做Learning rate(学习率)。可视化过程如下:
在这里插入图片描述

优化Tips

Tip1:调整学习率

在这里插入图片描述
上图左边褐色为损失函数的曲线,假设从左边最高点开始,如果学习率调整的刚刚好,比如红色的线,就能顺利找到最低点。如果学习率调整的太小,比如蓝色的线,就会走的太慢,虽然这种情况给足够的时间也可以找到最低点,实际情况可能会等不及出结果。如果学习率调整的有点大,比如绿色的曲线,就会在上面震荡,走不下去,永远无法到达最低点。还有可能非常大,比如黄色的线,直接就飞出去了,更新参数的时候指挥发现损失函数越更新越大。
虽然这样的可视化可以很直观的观察,但可视化也只能是在参数是一维或者二维的时候进行,更高维的情况已经无法可视化了。
解决方法就是上图右边的方法,将参数改变对损失函数的影响进行可视化。比如学习率太小(蓝色的线),损失函数下降的特别慢;学习率太大(绿色的线),损失函数下降的很快,但马上就卡住不下降了;学习率特别大(黄色的线),损失函数就飞出去了;红色的就是差不多刚好,可以得到一个好的结果。

举一个简单的思想:随着次数的增加,通过一些因子来减少学习率

  • 通常刚开始,初始点会距离最低点比较远,所以用大一点的学习率
  • update好几次参数之后呢,比较靠近最低点了,此时减少学习率
  • 比如 η t = η t t + 1 \eta^t={\eta^t\over\sqrt {t+1}} ηt=t+1 ηt,t是次数。随着次数的增加, η t \eta^t ηt减小

学习率不能是一个值通用所有的特征,不同的参数需要不同的学习率。

Adagrad算法

每个参数的学习率都把他除上之前微分的均方根。解释如下:
普通的梯度下降为:(w是一个参数)
w t + 1 ← w t − η t g t w^{t+1}\leftarrow w^t-\eta^tg^t wt+1wtηtgt
η t = η t t + 1 \eta^t={\eta^t\over\sqrt {t+1}} ηt=t+1 ηt
Adagrad可以做的更好:
σ t \sigma^t σt:之前参数的所有微分的均方根,对于每个参数都是不一样的)
w t + 1 ← w t − η t σ t g t w^{t+1}\leftarrow w^t-{\eta^t\over \sigma^t}g^t wt+1wtσtηtgt
g t = ∂ L ( θ t ) ∂ w g^t={\partial L(\theta^t)\over \partial w} gt=wL(θt)
下图是一个参数的更新过程:
在这里插入图片描述
将Adagrad的式子进行化简:
在这里插入图片描述
Adagrad存在的矛盾:
在这里插入图片描述
即在Adagrad中,当梯度越大的时候,步伐应该越大,但下面分母又导致当梯度越大的时候,步伐会越小。
正式解释:多参数下,梯度越大,跟最低点的距离不一定越远。
对比不同的参数
在这里插入图片描述
上图左边是两个参数的损失函数,颜色代表损失函数的值。如果只考虑参数 w 1 w_1 w1,就像图中蓝色的线,得到右边上图的结果;如果只考虑参数 w 2 w_2 w2,就像图中绿色的线,得到右边下图的结果。确实对于a和b,梯度越大,跟最低点的距离越远,同理c和d也成立。但是如果对比a和c,就不成立了,c比a大,但c距离最低点是比较近的。
所以最好的步伐应该是: 一 次 微 分 二 次 微 分 一次微分\over二次微分
即不止和一次微分成正比,还和二次微分成反比。最好的step应该是考虑到二次微分。再回到之前的Adagrad,对于 ∑ i = 0 t ( g i ) 2 \sqrt{\sum_{i=0}^t(g^i)^2} i=0t(gi)2 就是希望在尽可能不增加过多运算的情况下模拟二次微分。(如果计算二次微分,在实际情况可能会增加很多的时间消耗)

Tip2:随机梯度下降法

之前的梯度下降:
L = ∑ n ( y ^ n − ( b + ∑ w i x i n ) ) 2 L=\sum_n(\hat y^n-(b+\sum w_ix_i^n))^2 L=n(y^n(b+wixin))2
θ i = θ i − 1 − η ∇ L ( θ i − 1 ) \theta^i=\theta^{i-1}-\eta\nabla L(\theta^{i-1}) θi=θi1ηL(θi1)
而随机梯度下降法更快,损失函数不需要处理训练集的所有数据,选取一个例子 x n x^n xn
L = ( y ^ n − ( b + ∑ w i x i n ) ) 2 L=(\hat y^n-(b+\sum w_ix_i^n))^2 L=(y^n(b+wixin))2
θ i = θ i − 1 − η ∇ L ( θ i − 1 ) \theta^i=\theta^{i-1}-\eta\nabla L(\theta^{i-1}) θi=θi1ηL(θi1)
此时不需要像之前那样对对所有的数据进行处理,只需要计算某一个例子的损失函数Ln,就可以赶紧update梯度。下图对比:
在这里插入图片描述
常规梯度下降法走一步要处理所有二十个例子,但随即算法此时已经走了二十步(每处理一个例子就更新)

Tip3:特征缩放

比如有个函数:
y = b + w 1 x 1 + w 2 x 2 y=b+w_1x_1+w_2x_2 y=b+w1x1+w2x2
两个输入的分布范围很不一样,建议把他们的范围缩放,使得不同输入的范围是不一样的。
在这里插入图片描述
上图左边是 x 1 x_1 x1的scale要比 x 2 x_2 x2要小很多,所以当 w 1 w_1 w1 w 2 w_2 w2做同样的变化时, w 1 w_1 w1对y的变化影响是比较小的, w 2 w_2 w2 y y y的变化影响是比较大的。坐标系中是两个参数的error surface,先考虑左边蓝色,因 w 1 w_1 w1 y y y的变化影响比较小,所以 w 1 w_1 w1对损失函数的影响比较小, w 1 w_1 w1对损失函数有比较小的微分,所以 w 1 w_1 w1方向上是比较平滑的。同理 w 2 w_2 w2 y y y的影响比较大,所以 w 2 w_2 w2对损失函数的影响比较大,即在 w 2 w_2 w2方向有比较尖的峡谷。上图右边是两个参数scaling比较接近,右边的绿色图就比较接近圆形。
对于左边的情况,上面讲过这种狭长的情形不用Adagrad的话是比较难处理的,两个方向上需要不同的学习率,同一组学习率会搞不定它。而右边情形更新参数就会变得比较容易。左边的梯度下降并不是向最低点的方向走的,而是顺着等高线切线法线的方向走的。但绿色就可以向着圆心(最低点)走,这样做参数更新也比较有效率。

缩放方法

在这里插入图片描述
上面每一列都是一个例子,里面都有一组特征。对每个维度i(绿色框)都计算平均数,记作 m i m_i mi;还要计算标准差,记作 σ i \sigma_i σi。然后用第r个例子中的第i个特征,减掉平均数 m i m_i mi,然后除以标准差 σ i \sigma_i σi,得到的结果是所有的平均数都是0,所有的方差都是1。

梯度下降的理论基础

在这里插入图片描述
比如在 θ 0 \theta^0 θ0处,可以在一个小范围的圆圈内找到损失函数细小的 θ 1 \theta^1 θ1,不断的这样去寻找,接下来就是如何在小圆圈内快速的找到最小值?

泰勒展开式

定义:若 h ( x ) h(x) h(x) x = x 0 x=x_0 x=x0点的某个领域内有无限阶导数(即可无限微分,infinitely differentiable),那么在此领域内有:
h ( x ) = ∑ k = 0 ∞ h k ( x 0 ) k ! ( x − x 0 ) k = h ( x 0 ) + h ′ ( x 0 ) ( x − x 0 ) + h ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋅ ⋅ ⋅ h(x)=\sum_{k=0}^\infin {h^k(x_0)\over k!}(x-x_0)^k=h(x_0)+h'(x_0)(x-x_0)+{h''(x_0)\over2!}(x-x_0)^2+··· h(x)=k=0k!hk(x0)(xx0)k=h(x0)+h(x0)(xx0)+2!h(x0)(xx0)2+
x x x很接近 x 0 x_0 x0时,有 h ( x ) ≈ h ( x 0 ) + h ′ ( x 0 ) ( x − x 0 ) h(x)\approx h(x_0)+h'(x_0)(x-x_0) h(x)h(x0)+h(x0)(xx0)就是函数 h ( x ) h(x) h(x) x = x 0 x=x_0 x=x0点附近关于 x x x的幂函数展开式,也叫泰勒展开式。如下图所例:
在这里插入图片描述
图中3条蓝色线就是把前三项作图,橙色线是 s i n ( x ) sin(x) sin(x)
多变量泰勒展开式类似。如下图为两个变量的泰勒展开式:
在这里插入图片描述
回到之前如何快速在圆圈内找到最小值,基于泰勒展开式,在 ( a , b ) (a,b) (a,b)点的红色圆圈范围内,可以将损失函数用泰勒展开式进行简化:
在这里插入图片描述
问题集如下的范围内的优化问题:
在这里插入图片描述
不考虑s的话,可以看出剩下的部分就是两个向量 ( Δ θ 1 , Δ θ 2 ) (\Delta\theta_1,\Delta\theta_2) (Δθ1,Δθ2) ( u , v ) (u,v) (u,v)的内积,那怎样让它最小,就是和向量 ( u , v ) (u,v) (u,v)方向相反的向量。
在这里插入图片描述
在这里插入图片描述
发现最后的式子就是梯度下降的式子。但这种方法找到这个式子有个前提,泰勒展开式给的损失函数的估算值是要足够精确的,而这需要红色的圆圈足够小(也就是学习率足够小)来保证。所以理论上每次更新参数都想要损失函数减小的话,就需要学习率足够小才可以。
所以十几种,当更新参数的时候,如果学习率没有设置好,有可能会导致做梯度下降的时候,损失函数没有越来越小。以上只考虑了泰勒展开式的一次项,如果考虑到二次项(比如牛顿法),在实际中不是特别好,会涉及到二次微分等,多很多的运算,性价比不好。

梯度下降的限制

在这里插入图片描述
容易陷入局部极值,还有可能卡在不是极值,但微分值是0的地方,还有可能十几种当微分值小于某一个数值就停下来了,但这只是比较平缓,并不是极值点。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
梯度下降算法是机器学习中一种广泛应用的最优化算法,其主要目的是通过迭代找到目标函数的最小值,或者收敛到最小值。梯度下降算法的原理可以从一个下山的场景开始理解。算法的基本思想是沿着目标函数梯度的方向更新参数值,以期望达到目标函数的最小值。 在机器学习中,梯度下降算法常常用于求解损失函数的最小值。在简单的线性回归中,我们可以使用最小二乘法来求解损失函数的最小值。然而,在绝大多数情况下,损失函数是非线性的且复杂。因此,梯度下降算法在机器学习领域得到了广泛的应用。实际上,许多优秀的算法都是在梯度下降算法的启发下诞生的,例如AdaGrad、RMSProp、Momentum等等。 梯度下降算法的核心思想是通过计算目标函数的梯度来确定参数更新的方向。梯度表示了函数在某一点上的变化率,沿着梯度的方向可以使函数值快速减小。因此,梯度下降算法沿着梯度的反方向更新参数值,朝着目标函数的最小值靠近。算法的迭代过程会持续更新参数值,直到收敛到最小值或达到停止条件。 在实际应用中,为了提高算法的效率和准确性,通常会对梯度下降算法进行改进和优化。例如,可以使用学习率来控制参数值的更新步长,或者采用批量梯度下降来同时计算多个样本的梯度。这些改进可以帮助算法更快地收敛并找到更好的解。 总之,梯度下降算法是一种重要的最优化算法,在机器学习中被广泛应用。其原理是通过计算目标函数的梯度来更新参数值,以期望达到最小值。通过迭代的方式,梯度下降算法可以找到目标函数的最优解或者接近最优解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值