机器学习入门系列04,Gradient Descent(梯度下降法)

什么是Gradient Descent(梯度下降法)?

在第二篇文章中有介绍到梯度下降法的做法,传送门:机器学习入门系列02,Regression 回归:案例研究

Review: 梯度下降法

在回归问题的第三步中,需要解决下面的最优化问题:

 

θ∗=argminθL(θ)θ∗=arg⁡minθL(θ)

 

 

L:lossfunction(损失函数)L:lossfunction(损失函数)

 

 

θ:parameters(参数)θ:parameters(参数)

 

这里的parameters是复数,即 θθ 指代一堆参数,比如上篇说到的 ww 和 bb。

我们要找一组参数 θθ ,让损失函数越小越好,这个问题可以用梯度下降法解决:

假设 θθ 有里面有两个参数 θ1,θ2θ1,θ2

随机选取初始值 θ0=[θ01θ02]θ0=[θ10θ20],这里可能某个平台不支持矩阵输入,看下图就好。

然后分别计算初始点处,两个参数对 LL 的偏微分,然后 θ0θ0 减掉 ηη 乘上偏微分的值,得到一组新的参数。同理反复进行这样的计算。黄色部分为简洁的写法,∇L(θ)∇L(θ)即为梯度

ηη叫做Learning rates(学习速率)

上图举例将梯度下降法的计算过程进行可视化。

Tip1:调整 learning rates(学习速率)

小心翼翼地调整 learning rate

举例:

上图左边黑色为损失函数的曲线,假设从左边最高点开始,如果 learning rate 调整的刚刚好,比如红色的线,就能顺利找到最低点。如果 learning rate 调整的太小,比如蓝色的线,就会走的太慢,虽然这种情况给足够多的时间也可以找到最低点,实际情况可能会等不及出结果。如果 learning rate 调整的有点大,比如绿色的线,就会在上面震荡,走不下去,永远无法到达最低点。还有可能非常大,比如黄色的线,直接就飞出去了,update参数的时候只会发现损失函数越更新越大。

虽然这样的可视化可以很直观观察,但可视化也只是能在参数是一维或者二维的时候进行,更高维的情况已经无法可视化了。

解决方法就是上图右边的方案,将参数改变对损失函数的影响进行可视化。比如 learning rate 太小(蓝色的线),损失函数下降的非常慢;learning rate 太大(绿色的线),损失函数下降很快,但马上就卡住不下降了;learning rate特别大(黄色的线),损失函数就飞出去了;红色的就是差不多刚好,可以得到一个好的结果。

自适应 learning rate

举一个简单的思想:随着次数的增加,通过一些因子来减少 learning rate

  • 通常刚开始,初始点会距离最低点比较远,所以使用大一点的 learning rate
  • update好几次参数之后呢,比较靠近最低点了,此时减少 learning rate
  • 比如 ηt=η/t+1−−−−√ηt=η/t+1,tt 是次数。随着次数的增加,ηtηt 减小

但 learning rate 不能是 one-size-fits-all ,不同的参数需要不同的 learning rate

Adagrad 算法

Adagrad 是什么?

每个参数的学习率都把它除上之前微分的均方根。解释:

普通的梯度下降为:

 

wt+1←wt−ηtgtwt+1←wt−ηtgt

 

 

ηt=ηt+1−−−−√ηt=ηt+1

 

ww 是一个参数

Adagrad 可以做的更好:

 

wt+1←wt−ηtσgtwt+1←wt−ηtσgt

 

 

gt=∂L(θt)∂wgt=∂L(θt)∂w

 

σtσt:之前参数的所有微分的均方根,对于每个参数都是不一样的。

Adagrad举例

下图是一个参数的更新过程

将 Adagrad 的式子进行化简:

Adagrad 存在的矛盾?

在 Adagrad 中,当梯度越大的时候,步伐应该越大,但下面分母又导致当梯度越大的时候,步伐会越小。

下图是一个直观的解释:

下面给一个正式的解释:

比如初始点在 x0x0,最低点为 −b2a−b2a,最佳的步伐就是 x0x0 到最低点之间的距离 |x0+b2a||x0+b2a|,也可以写成 |2ax0+b|2a|2ax0+b|2a。而刚好 |2ax0+b||2ax0+b| 就是方程绝对值在x0x0这一点的微分。

这样可以认为如果算出来的微分越大,则距离最低点越远。而且最好的步伐和微分的大小成正比。所以如果踏出去的步伐和微分成正比,它可能是比较好的。

结论1-1:梯度越大,就跟最低点的距离越远。

这个结论在多个参数的时候就不一定成立了。

多参数下结论不一定成立

对比不同的参数

上图左边是两个参数的损失函数,颜色代表损失函数的值。如果只考虑参数 w1w1,就像图中蓝色的线,得到右边上图结果;如果只考虑参数 w2w2,就像图中绿色的线,得到右边下图的结果。确实对于a和b,结论1-1是成立的,同理c和b也成立。但是如果对比a和c,就不成立了,c比a大,但c距离最低点是比较近的。

所以结论1-1是在没有考虑跨参数对比的情况下,才能成立的。所以还不完善。

之前说到的最佳距离|2ax0+b|2a|2ax0+b|2a,还有个分母 2a2a 。对function进行二次微分刚好可以得到:

 

∂2y∂x2=2a∂2y∂x2=2a

 

所以最好的步伐应该是:

 

一次微分二次微分一次微分二次微分

 

即不止和一次微分成正比,还和二次微分成反比。最好的step应该考虑到二次微分:

Adagrad 进一步的解释

再回到之前的 Adagrad

对于∑ti=0(gi)2−−−−−−−−√∑i=0t(gi)2 就是希望再尽可能不增加过多运算的情况下模拟二次微分。(如果计算二次微分,在实际情况中可能会增加很多的时间消耗)

Tip2:Stochastic Gradient Descent(随机梯度下降法)

之前的梯度下降:

 

L=∑n(y^n−(b+∑wixni))2L=∑n(y^n−(b+∑wixin))2

 

 

θi=θi−1−η∇L(θi−1)θi=θi−1−η∇L(θi−1)

 

而Stochastic Gradient Descent(更快):

损失函数不需要处理训练集所有的数据,选取一个例子 xnxn

 

Ln=(y^n−(b+∑wixni)2Ln=(y^n−(b+∑wixin)2

 

 

θi=θi−1−η∇Ln(θi−1)θi=θi−1−η∇Ln(θi−1)

 

此时不需要像之前那样对所有的数据进行处理,只需要计算某一个例子的损失函数LnLn,就可以赶紧update 梯度。

对比:

常规梯度下降法走一步要处理到所有二十个examples,但Stochastic 此时已经走了二十步(没处理一个example就更新)

Tip3:Feature Scaling(特征缩放)

比如有个function:

 

y=b+w1x1+w2x2y=b+w1x1+w2x2

 

两个输入的分布的范围很不一样,建议把他们的范围缩放,使得不同输入的范围是一样的。

为什么要这样做?

上图左边是x1x1的scale比 x2x2要小很多,所以当w1w1 和 w2w2做同样的变化时,w1w1对y的变化影响是比较小的,x2x2对y的变化影响是比较大的。

坐标系中是两个参数的error surface(现在考虑左边蓝色),因为w1w1对y的变化影响比较小,所以w1w1对损失函数的影响比较小,w1w1对损失函数有比较小的微分,所以w1w1方向上是比较平滑的。同理x2x2对y的影响比较大,所以x2x2对损失函数的影响比较大,所以在x2x2方向有比较尖的峡谷。

上图右边是两个参数scaling比较接近,右边的绿色图就比较接近圆形。

对于左边的情况,上面讲过这种狭长的情形不过不用Adagrad的话是比较难处理的,两个方向上需要不同的学习率,同一组学习率会搞不定它。而右边情形更新参数就会变得比较容易。左边的梯度下降并不是向着最低点方向走的,而是顺着等高线切线法线方向走的。但绿色就可以向着圆心(最低点)走,这样做参数更新也是比较有效率。

怎么做 scaling?

方法非常多,这里举例一种常见的做法:

上图每一列都是一个例子,里面都有一组feature。

对每一个维度ii(绿色框)都计算平均数,记做mimi;还要计算标准差,记做σiσi。

然后用第r个例子中的第i个输入,减掉平均数mimi,然后除以标准差σiσi,得到的结果是所有的维数都是0,所有的方差都是1

梯度下降的理论基础

问题

当用梯度下降解决问题:

 

θ∗=argminθL(θ)θ∗=arg⁡minθL(θ)

 

每次更新参数 θθ,都得到一个新的 θθ,它都使得损失函数更小。即:

 

L(θ0)>L(θ1)>L(θ2)>⋯L(θ0)>L(θ1)>L(θ2)>⋯

 

上述结论正确吗?

结论是不正确的。。。

数学理论

比如在θ0θ0处,可以在一个小范围的圆圈内找到损失函数细小的θ1θ1,不断的这样去寻找。

接下来就是如果在小圆圈内快速的找到最小值?

Taylor Series(泰勒展开式)

先介绍一下泰勒展开式

定义

若h(x)h(x)在x=x0x=x0点的某个领域内有无限阶导数(即无限可微分,infinitely differentiable),那么在此领域内有:

 

h(x)=∑k=0∞hk(x0)k!(x−x0)kh(x)=∑k=0∞hk(x0)k!(x−x0)k

 

 

=h(x0)+h′(x0)(x−x0)+h′′(x0)2!(x−x0)2+⋯(1−1)=h(x0)+h′(x0)(x−x0)+h″(x0)2!(x−x0)2+⋯(1−1)

 

当xx很接近x0x0时,有h(x)≈h(x0)+h′(x0)(x−x0)h(x)≈h(x0)+h′(x0)(x−x0)

式1-1就是函数h(x)h(x)在x=x0x=x0点附近关于xx的幂函数展开式,也叫泰勒展开式

举例:

图中3条蓝色线是把前3项作图,橙色线是 sin(x)sin(x)。

多变量泰勒展开式

下面是两个变量的泰勒展开式

利用泰勒展开式简化

回到之前如何快速在圆圈内找到最小值。基于泰勒展开式,在(a,b)(a,b) 点的红色圆圈范围内,可以将损失函数用泰勒展开式进行简化:

将问题进而简化为下图:

不考虑s的话,可以看出剩下的部分就是两个向量(Δθ1,Δθ2)(Δθ1,Δθ2) 和 (u,v)(u,v)的内积,那怎样让它最小,就是和向量 (u,v)(u,v) 方向相反的向量

然后将u和v带入。

 

L(θ)≈s+u(θ1−a)+v(θ2−b)(1−2)L(θ)≈s+u(θ1−a)+v(θ2−b)(1−2)

 

发现最后的式子就是梯度下降的式子。但这里用这种方法找到这个式子有个前提,泰勒展开式给的损失函数的估算值是要足够精确的,而这需要红色的圈圈足够小(也就是学习率足够小)来保证。所以理论上每次更新参数都想要损失函数减小的话,即保证式1-2 成立的话,就需要学习率足够足够小才可以。

所以实际中,当更新参数的时候,如果学习率没有设好,是有可能式1-2是不成立的,所以导致做梯度下降的时候,损失函数没有越来越小。

式1-2只考虑了泰勒展开式的一次项,如果考虑到二次项(比如牛顿法),在实际中不是特别好,会涉及到二次微分等,多很多的运算,性价比不好。

梯度下降的限制

  • 容易陷入局部极值
  • 还有可能卡在不是极值,但微分值是0的地方
  • 还有可能实际中只是当微分值小于某一个数值就停下来了,但这里只是比较平缓,并不是极值点
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值