例题
这里 n 的范围都是 1e9
一:普通版O(sqrt(n))
i 从 2 到 sqrt(n) ,一个一个 判断,是不是 n 的因数,
稍微优化一下,当 i > 2 时,只需要判断 i 是奇数的情况。
bool isprime(int n)
{
int t = sqrt(n);
if(n == 2 || n == 3) return true;
for(int i = 2; i <= t; i++)
{
if(i > 2 && (i&1) == 0) continue;
if(n%i == 0) return false;
}
return true;
}
二:豪华版 O(sqrt(n) / 3)
实际做题的话要更快
经过观察,所有的素数都分布在 6 的倍数 两侧 (2 ,3 除外)。
所以 (n % 6 != 1) &&( n % 6 != 5) 的 一定不是素数。
当然满足条件的也可能不是素数~~~(这里的判断证明还不明白。。。。)
bool isprime(int n)
{
if(n == 0 || n == 1) return false;
if(n == 2 || n == 3) return true;
if(n%6 != 1 && n%6 != 5) return false;
int t = sqrt(n);
for(int i = 5; i <= t; i+=6)
{
if(n%i == 0 || n%(i+2) == 0)
return false;
}
return true;
}
三:欧拉筛打表 O( n )
注意这里的 O( n ) ,的 n 是打表的长度,比如,找出 1~n 的 所有素数,
显然,n 为 1e9 的话是不可能打表的,就算能也是会超时的,
如果用欧拉筛来判断一个 1e9 的数是否是素数,只需要大概打表到 3e4 就可以了!!!!!!!
因为:
任意一个数 n 都可以表示成若干质数的乘积,所以对于一个 1e9 的数 n ,先求出1~sqrt( 1e9 ) 的所有质数
( sqrt( 1e9 ) = 31628 )
再用 n 一个一个与这些质数比较 , 如果这些质数中没有 n 的因数, 那么 n 一定是一个质数!
因为 1~sqrt(n) 中没有 n 的质因数的话,> sqrt(n) 中一定没有 n 的因数。
typedef long long LL;
const int MAXN = 31628;
int prm[MAXN+1],vis[MAXN+1], cnt = 0;
void init()
{
for(int i = 2; i <= MAXN; i++)
{
if(!vis[i]) prm[cnt++] = i; // 没有被标记的就是素数
for(int j = 0; j < cnt; j++)
{
LL t = i*prm[j];
if(t > MAXN) break;
vis[t] = 1;
if(i%prm[j] == 0) break;
}
}
return ;
}
bool isprime(int n)
{
if(n <= MAXN)
{
if(vis[n] == 0) return true;
return false;
}
else
{
for(int i = 0; i < cnt; i++)
if(n%prm[i] == 0)
return false;
}
return true;
}
上面的if(i % prim[j] == 0 ) break; 是完成上面要求的重要条件
我们首先知道一个合数一定可以表示成素数的乘积,那么也一定可以表示成他的最小质因数乘以另外一个数,已知prim数组中的素数是依次递增的,
当i满足i%prim[j] == 0的时候,
假如我们继续执行,那么下一个要判断为不是质数的数为:prim[j+1]*i
,但是我们发现这个数的最小质因数一定是prim[j] ,因为这里的i满足i%prim[j] == 0 ,prim[j]是他的最小质因数,所以这里就和我们上面的要求有矛盾,
当我们遇到后面x满足:prim[j] * x = prim[j+1]*i时,又会重新判断一次这个数字