·判断n是否为素数总结高效率·(超大数n判断见另一篇)

例题

这里 n 的范围都是 1e9


一:普通版O(sqrt(n))

 i  从 2 到 sqrt(n) ,一个一个 判断,是不是 n 的因数,

稍微优化一下,当 i > 2 时,只需要判断 i 是奇数的情况。

bool isprime(int n)
{
    int t = sqrt(n);
    if(n == 2 || n == 3) return true;
    for(int i = 2; i <= t; i++)
    {
        if(i > 2 && (i&1) == 0) continue;
        if(n%i == 0) return false;
    }
    return true;
}

二:豪华版 O(sqrt(n) / 3)

实际做题的话要更快

经过观察,所有的素数都分布在 6 的倍数 两侧 (2 ,3 除外)。

所以 (n % 6 != 1) &&( n % 6 != 5) 的 一定不是素数。

当然满足条件的也可能不是素数~~~(这里的判断证明还不明白。。。。)

bool isprime(int n)
{
    if(n == 0 || n == 1) return false;
    if(n == 2 || n == 3) return true;
    if(n%6 != 1 && n%6 != 5) return false;
    int t = sqrt(n);
    for(int i = 5; i <= t; i+=6)
    {
        if(n%i == 0 || n%(i+2) == 0)
            return false;
    }
    return true;
}

 

三:欧拉筛打表 O( n )

注意这里的 O( n ) ,的 n 是打表的长度,比如,找出 1~n 的 所有素数,

显然,n 为 1e9 的话是不可能打表的,就算能也是会超时的,

如果用欧拉筛来判断一个 1e9 的数是否是素数,只需要大概打表到 3e4 就可以了!!!!!!!

因为:

任意一个数 n 都可以表示成若干质数的乘积,所以对于一个 1e9 的数 n ,先求出1~sqrt( 1e9 ) 的所有质数

( sqrt( 1e9 ) = 31628 )

用 n 一个一个与这些质数比较 , 如果这些质数中没有 n 的因数, 那么 n 一定是一个质数

因为 1~sqrt(n) 中没有 n 的质因数的话,> sqrt(n) 中一定没有 n 的因数。

typedef long long LL;
const int MAXN = 31628; 
int prm[MAXN+1],vis[MAXN+1], cnt = 0;

void init()
{
    for(int i = 2; i <= MAXN; i++)
    {
        if(!vis[i]) prm[cnt++] = i; // 没有被标记的就是素数
        for(int j = 0; j < cnt; j++)
        {
            LL t = i*prm[j];
            if(t > MAXN) break;
            vis[t] = 1;   
            if(i%prm[j] == 0) break;
        }
    }
    return ;
}

bool isprime(int n)
{
    if(n <= MAXN)
    {
        if(vis[n] == 0) return true;
        return false;
    }
    else
    {
        for(int i = 0; i < cnt; i++)
            if(n%prm[i] == 0)
                return false;
    }
    return true;
}

上面的if(i % prim[j] == 0 ) break;   是完成上面要求的重要条件

我们首先知道一个合数一定可以表示成素数的乘积,那么也一定可以表示成他的最小质因数乘以另外一个数,已知prim数组中的素数是依次递增的,

当i满足i%prim[j] ==  0的时候,

假如我们继续执行,那么下一个要判断为不是质数的数为:prim[j+1]*i  

,但是我们发现这个数的最小质因数一定是prim[j] ,因为这里的i满足i%prim[j] == 0 ,prim[j]是他的最小质因数,所以这里就和我们上面的要求有矛盾,

当我们遇到后面x满足:prim[j] * x = prim[j+1]*i时,又会重新判断一次这个数字
 


四:超大数n的素数判断!!!!

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 以下是判断素数的 Python 代码: def is_prime(n): if n < 2: return False for i in range(2, int(n ** 0.5) + 1): if n % i == 0: return False return True 如果 n 是素数,返回 True,否则返回 False。 ### 回答2: 判断一个数n是否素数,可以通过判断是否能被小于n的正整数整除来确定。 首先,排除一些特殊情况,如n小于2时,它不是素数;n等于2时,它是素数。因为2是最小的质数,且只能被1和2整除。 然后,我们可以用一个循环从2开始,依次判断n能否被从2到n-1之间的数字整除。如果找到n能被任意一个数字整除,说明n不是素数;如果循环结束也没有找到能整除n的数字,说明n是素数。 具体算法如下: 1. 判断n是否小于2,如果是,则输出“不是素数”,结束。 2. 判断n是否等于2,如果是,则输出“是素数”,结束。 3. 初始化一个变量flag为true,用于记录是否能找到能整除n的数字。 4. 使用一个循环从2开始,依次判断n能否被从2到n-1之间的数字整除。循环条件为i从2循环到n-1。 - 若n能被i整除,则令flag为false,跳出循环。 5. 判断flag的,如果为true,则输出“是素数”;如果为false,则输出“不是素数”。 以上就是判断一个数n是否素数的算法。 需要注意的是,对于较大的数n,上述算法的时间复杂度较高,可以通过一些其他的优化算法来提高判断效率。 ### 回答3: 素数是只能被1和自身整除的正整数。要判断一个数n是否素数,我们可以逐个尝试从2到(n-1)之间的所有数,看看是否能被n整除。 算法如下: 1. 当n为1时,返回False,因为1不是素数。 2. 从2开始,逐个尝试除以2到(n-1)这些数。 a. 如果n可以整除任一数m,则n不是素数,返回False。 3. 若2到(n-1)的所有数都无法整除n,则n为素数,返回True。 以下是用Python语言编写的程序,实现上述算法: def is_prime(n): if n == 1: return False for i in range(2, n): if n % i == 0: return False return True 经过上述步骤,我们可以输入一个数n,该程序会判断n是否素数,并返回相应结果。 注意:这个算法在判断大数时会比较耗时,因为需要逐个尝试大量的数。在实际应用中,如果需要判断大数是否素数,可能会使用更高效的算法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值