归并排序 递归与非递归写法 (运行方式见上篇文章)

// 分两半,各自排序,然后merge(a, l, m, r) [l,m] [m+1,r]
	
	/**
	 * 归并排序思想: 首先分成两部分,将两部分分别排序,之后 merge 到一起 三个函数(主函数 递归划分 merge)
	 * */

	// 递归方法实现
	public static void mergeSort1(int[] a){
		// 对一段区间进行排序
		process(a,0,a.length-1);
	}
	// 对一段 闭区间 进行排序
	private static void process(int[] a, int l, int r) {
		// 区间只有1个数不用排,递归出口
		if(r - l <= 0) return;
		// 找到中间点
		int mid = l + ((r-l)>>1);
		// 分别排序
		process(a, l, mid);
		process(a, mid+1, r);
		// 进行merge
		merge(a,l,mid,r);
	}

	private static void merge(int[] a, int l, int mid, int r) {
		// 两部分各自的指针
		int i = l, j = mid+1;
		// 开辟新的空间
		int[] temp = new int[r-l+1];
		int index = 0;

		// 两边都没有遍历完成
		while (i<=mid && j<=r){
			if (a[i] < a[j]){
				temp[index++] = a[i++];
			} else {
				temp[index++] = a[j++];
			}
		}

		// 将剩下的一边直接加入 (下边两个循环最多执行一个,也可能都不执行)
		while (i<=mid) {
			temp[index++] = a[i++];
		}
		while (j<=r) {
			temp[index++] = a[j++];
		}

		// 将temp 拷贝回a
		for (int k = l; k<=r; ++k) {
			a[k] = temp[k-l];
		}

	}

	// 非递归 步长为1(左组1,右组1) 2 4 6 8 步长不能超过长度 主要是 process 函数的实现
	public static void process2(int[] a) {
		int step = 1, r = 0, l = 0, mid = 0;
		while (step < a.length) {
			l = 0;
			while (r < a.length) {
				// 左半部分已经不够了,说明已经排好了,无需merge,可以停止了
				if (a.length - l <= step)
					break;
				// 确定 mid 值
				mid = l + step - 1;
				// 确定右边界
				r = Math.min(a.length-1, mid+step);
				// 开始merge
				merge(a, l, mid, r);
				// 求下一个区间
				l = r + 1;
			}
			// step 每次的变化 *2
			// 但是不能直接×2 否则会溢出, 只能大于不能等于否则会丢解
			if (step > a.length/2)
				break;
			else
				step <<= 1;
		}
	}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

从前慢慢慢死了

打钱!一分也行啊!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值