1、交换字符使得字符串相同
有两个长度相同的字符串 s1 和 s2,且它们其中 只含有 字符 “x” 和 “y”,你需要通过「交换字符」的方式使这两个字符串相同。
每次「交换字符」的时候,你都可以在两个字符串中各选一个字符进行交换。
交换只能发生在两个不同的字符串之间,绝对不能发生在同一个字符串内部。也就是说,我们可以交换 s1[i] 和 s2[j],但不能交换 s1[i] 和 s1[j]。
最后,请你返回使 s1 和 s2 相同的最小交换次数,如果没有方法能够使得这两个字符串相同,则返回 -1 。
示例 1:
输入:s1 = "xx", s2 = "yy"
输出:1
解释:
交换 s1[0] 和 s2[1],得到 s1 = "yx",s2 = "yx"。
示例 2:
输入:s1 = "xy", s2 = "yx"
输出:2
解释:
交换 s1[0] 和 s2[0],得到 s1 = "yy",s2 = "xx" 。
交换 s1[0] 和 s2[1],得到 s1 = "xy",s2 = "xy" 。
注意,你不能交换 s1[0] 和 s1[1] 使得 s1 变成 "yx",因为我们只能交换属于两个不同字符串的字符。
示例 3:
输入:s1 = "xx", s2 = "xy"
输出:-1
示例 4:
输入:s1 = "xxyyxyxyxx", s2 = "xyyxyxxxyx"
输出:4
提示:
1 <= s1.length, s2.length <= 1000
s1, s2 只包含 'x' 或 'y'。
思路:要达到最小交换次数,只能是发生交换的两个位置字母都一样,这样子就可以在只交换一次使两个位置的字母相同,如xx,yy。如果不一样的话,如xy,yx,就要换两次。注意当需要交换的位置数量为技术时返回-1,这时候无论怎么交换,都不可能使两个字符串相等的。
参考代码:
```java
class Solution {
public int minimumSwap(String s1, String s2)
{
if(s1.length()!=s2.length())
return -1;
int cnt1=0,cnt2=0;
for(int i=0;i<s1.length();i++)
{
if(s1.charAt(i)!=s2.charAt(i))
{
if(s1.charAt(i)=='x')
cnt1++;
else
cnt2++;
}
}
if((cnt1+cnt2)%2==1)
return -1;
cnt1=(cnt1%2==0)?cnt1/2:cnt1/2+1;
cnt2=(cnt2%2==0)?cnt2/2:cnt2/2+1;
return cnt1+cnt2;
}
}
2、统计「优美子数组」
给你一个整数数组 nums 和一个整数 k。
如果某个子数组中恰好有 k 个奇数数字,我们就认为这个子数组是「优美子数组」。
请返回这个数组中「优美子数组」的数目。
示例 1:
输入:nums = [1,1,2,1,1], k = 3
输出:2
解释:包含 3 个奇数的子数组是 [1,1,2,1] 和 [1,2,1,1] 。
示例 2:
输入:nums = [2,4,6], k = 1
输出:0
解释:数列中不包含任何奇数,所以不存在优美子数组。
示例 3:
输入:nums = [2,2,2,1,2,2,1,2,2,2], k = 2
输出:16
提示:
1 <= nums.length <= 50000
1 <= nums[i] <= 10^5
1 <= k <= nums.length
思路:先计算出所有奇数位置的前面有多少个偶数,存放在list1中,然后计算所有奇数位置的后面有多少个偶数,存放在list2中。然后以k-1为区间长度遍历list1、list2,该位置的优美子数组个数=(该位置前面的偶数位置个数+1)*(该位置后面的的奇数位置个数+1)。
参考代码:
class Solution {
public int numberOfSubarrays(int[] nums, int k)
{
int cnt=0;
for(int i=0;i<nums.length;i++)
if(nums[i]%2==1)
{
cnt++;
}
if(cnt<k)
return 0;
int[] arr=new int[nums.length];
int t=0;
for(int i=0;i<arr.length;i++)
{
if(nums[i]%2==0)
t++;
else
{
arr[i]=t;
t=0;
}
}
List<Integer> list1=new ArrayList<Integer>();
List<Integer> list2=new ArrayList<Integer>();
for(int i=0;i<arr.length;i++)
{
if(nums[i]%2==1)
{
if(list1.isEmpty())
list1.add(arr[i]);
else
{
list1.add(arr[i]);
list2.add(arr[i]);
}
}
}
list2.add(t);
int ans=0;
for(int i=0;i<list1.size();i++)
{
if(i+k-1<list2.size())
{
ans+=(list1.get(i)+1)*(list2.get(i+k-1)+1);
}
}
return ans;
}
}
3、移除无效的括号
题目难度 Medium
给你一个由 ‘(’、’)’ 和小写字母组成的字符串 s。
你需要从字符串中删除最少数目的 ‘(’ 或者 ‘)’ (可以删除任意位置的括号),使得剩下的「括号字符串」有效。
请返回任意一个合法字符串。
有效「括号字符串」应当符合以下 任意一条 要求:
空字符串或只包含小写字母的字符串
可以被写作 AB(A 连接 B)的字符串,其中 A 和 B 都是有效「括号字符串」
可以被写作 (A) 的字符串,其中 A 是一个有效的「括号字符串」
示例 1:
输入:s = "lee(t(c)o)de)"
输出:"lee(t(c)o)de"
解释:"lee(t(co)de)" , "lee(t(c)ode)" 也是一个可行答案。
示例 2:
输入:s = "a)b(c)d"
输出:"ab(c)d"
示例 3:
输入:s = "))(("
输出:""
解释:空字符串也是有效的
示例 4:
输入:s = "(a(b(c)d)"
输出:"a(b(c)d)"
提示:
1 <= s.length <= 10^5
s[i] 可能是 '('、')' 或英文小写字母
思路:遍历字符串,利用栈存储"(“的下标,当遇到”)“时,弹出栈顶。当栈为空时,说明有多余的”)",将该位置上的字符删除。遍历完后,此时的栈中放的是多余的"(",将这些位置的"("删除。
参考代码:
class Solution {
public String minRemoveToMakeValid(String s)
{
Stack<Integer> st=new Stack<Integer>();
char[] chs = s.toCharArray();
for(int i=0;i<chs.length;i++)
{
if(chs[i]==')')
{
if(st.isEmpty())
chs[i]=' ';
else
st.pop();
}
else if(chs[i]=='(')
st.push(i);
}
while(!st.isEmpty())
chs[st.pop()]=' ';
s=new String(chs);
s=s.replaceAll(" ", "");
return s;
}
}
4、 检查「好数组」
给你一个正整数数组 nums,你需要从中任选一些子集,然后将子集中每一个数乘以一个 任意整数,并求出他们的和。
假如该和结果为 1,那么原数组就是一个「好数组」,则返回 True;否则请返回 False。
示例 1:
输入:nums = [12,5,7,23]
输出:true
解释:挑选数字 5 和 7。
5*3 + 7*(-2) = 1
示例 2:
输入:nums = [29,6,10]
输出:true
解释:挑选数字 29, 6 和 10。
29*1 + 6*(-3) + 10*(-1) = 1
示例 3:
输入:nums = [3,6]
输出:false
提示:
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^9
思路:这题虽然是hard级别但只要想清楚了,其实并不难。首先是好数组的定义,子集中每一个数乘以一个 任意整数,它们的和结果为 1。换句话说,就是看他们的差值怎样才能拼凑成1,答案是只有当子集的最大公约数为1时才能拼凑成1,如4,6,最大公约数为2,所以无论怎么拼都无法拼凑出1。再比如3、5,最大公约数为1,3*2-5=1。这个想明白了就简单了。
参考代码:
class Solution {
public boolean isGoodArray(int[] nums)
{
int dd=nums[0];
for(int i=0;i<nums.length;i++)
dd=gcd(dd,nums[i]);
return dd==1;
}
private int gcd(int m, int n)
{
return m%n==0?n:gcd(n, m%n);
}
}