中国剩余定理-信息安全数学基础实验

中国剩余定理

原理

中国剩余定理求解同余方程组
在这里插入图片描述
在这里插入图片描述

求解流程

在这里插入图片描述
流程图
在这里插入图片描述

举个例子

在这里插入图片描述
比如这个例子里
三个方程

  1. a分别为2 3 2
  2. m分别为3 5 7
  3. 先判断是否互质 这个不用说了吧 3 5 7
  4. 然后分别计算M M-1
  5. 最后求解X

代码实现

环境 win10 vs2017 mircal库 c语言

输入: txt 三个方程组 前三行分别为a1 a2 a3 后三行为m1 m2 m3
输出 : m不互质不能计算 OR 计算 出 X

mircal库的使用在其他博客计算

//miracl
//实现中国剩余定理 
//输入格式 txt 3个a 3个m 分行


#include"miracl.h"
#include"mirdef.h"
#include <string.h>
#include<stdio.h>


int main()
{
	int i = 0;
	int j = 0;
	big a[3], m[3], x[3], m1[3], m2[3];
	big c0, c1,c2,c3,c4,c5,c6,answer, M,W,X;
	miracl *mip = mirsys(5000, 10);  //5000个十进制  500长的时候求逆元会报错因为超过500了
	mip->IOBASE = 10;

	FILE *fp;
	char strline[1024];
	char filename[] = "14.txt";

	for(i = 0; i < 3; i++)
	{
		a[i] = mirvar(0); //a
		m[i] = mirvar(0);  //m
		x[i] = mirvar(0);
		m1[i] = mirvar(0);  //M
		m2[i] = mirvar(0);  //M-1
	}
	c0 = mirvar(0);  //0  辅助参数
	c1 = mirvar(1);  //1
	c2 = mirvar(0);  //0
	c3 = mirvar(0);  //0
	c4 = mirvar(0);  //0
	c5 = mirvar(1);   //1
	c6 = mirvar(1);   //1

	answer = mirvar(0);
	M  = mirvar(1);
	W = mirvar(1);
	X = mirvar(0);

	//打开文件
	if ((fp = fopen(filename, "r")) == NULL)
	{
		printf("error");
		return -1;
	}
	printf("input:\n");
	//读取a与m
	for (i = 0; i < 3; i++)
	{
		fgets(strline, 1024, fp);
		cinstr(a[i], strline);
		cotnum(a[i], stdout);
	}
	
	for (i = 0; i < 3; i++)
	{
		fgets(strline, 1024, fp);
		cinstr(m[i], strline);
		cotnum(m[i], stdout);
	}
	printf("\n");
	fclose(fp);

	//判断是否能用中国剩余定理
	for (i = 0; i < 3; i++)
	{
		for (j = i+1; j < 3; j++)
		{
			egcd(m[i], m[j], c0);//c0为最大公约数
			if (compare(c0, c1) <= 0)  //互质
				continue;
			else {
				printf("m不互质,不能直接应用中国剩余定理\n");
				return -1;
			}
		}	
	}
	printf("test ok\n");
	//计算m =m1*m2*m3
	for (i = 0; i < 3; i++)
	{
		multiply(m[i], M, M); //m =m1*m2*m3
	}
	copy(M, W);  //转存

	for (i = 0; i < 3; i++)
	{
		divide(M, m[i], m1[i]); // M =  m/mj
		//printf("div\n");
		xgcd(m1[i], m[i], m2[i], c4, c6); //MM-1 = 1 mod m
		//printf("xgcd\n");
		copy(W, M);  //
	}

	//计算X
	for (i = 0; i < 3; i++)
	{
		multiply(m1[i], m2[i], c3);
		multiply(c3, a[i], x[i]);  //x = MM-1a +....mod(m)
		add(x[i], X, X);
	}

	powmod(X, c5, M, answer);//answer = X^1 mod M
	printf("answer is:\n");
	cotnum(answer, stdout); //打印
	mirexit();
	return 0;
}

关键代码

判断是否能使用中国剩余定理
在这里插入图片描述
求M与M-1
在这里插入图片描述
求解x
在这里插入图片描述

实际运行

  1. 互质的
    在这里插入图片描述
  2. 可以使用中国剩余定理

在这里插入图片描述

P.S. txt数据

1.txt 不互质

1703400778910483820422805008255510202952780108580687282406204991102977355497819362037336119731002913846662180847077020740236290693493738835482271882051497287782803150523222405080338334271801792866482004568188646373815031989672512987923656390452397739
2724305591776277437698018538336328525368755596343722369278379045862095348399405909803531445622923586434858075923794289199772931203020662107251938261421134535489303223863021432862007558144614961478557772158790865755237609603854734189485065702894533007
5054062422109780731533257906013120348277952566924151532670827347964065027024283070553070224352222147708139041781535542580186174743209933967784491580267630649415317930613025621277091068103021482556687957739478553608686399952265973926562315865941811106
529012089683106027540972464242844528071743673743373492337127252712791226562406546874415951553948390892712915241165589135143177845694531817071616643290537045923226008758702728170159550568805907850622424020015265726841001559668865110779486144192282420641364473883446730980837401121533551908678272444684
543215757827618377203473258275047104979822158102404878687148537849799550247381564365578590422056394278257158069356234349542268988578552880243969652244111766224512688426426706878276641902193985933655384799228976467016700686667749302166453794272633505983640121880738193066243430412939374407346361018673
910409201715205002347478646685130446423660152260507358434979331439581396068284694915012061028789908792252336550127518559297299352963181057834931040933258962452367236215393076418627949218921266472636232832254258117915197059091231844804196176368468920201615703783443596364327788081668519651744410101292

2.txt 可求结果

8695039453824585971327803091640327439264591005655488011745393293145693657952152999306407259261770227769126705900977747911851437578989508123510979745347100821709337665424897266934977753636498274478498325810960608950295083895917256121194946489862590531
2843586888776659243226129768596946248650199985912875849363349934062940237054802099741704753655572936241294947678141581242450053030988467105995226180947812728014932325811696214659355368088498823535203466513124053882630083938669706033914334272897725827
7823172232329967143253080336216473133559059471949452135263320655253223177876623709115617602222829735561588048570850030793579858516821809715240795109686396100253463538575629486987673937099056108251105593664390258183737270501095307514377495715221620851
116017853623276268534139398907929878877787793651980551492831128460152265817955210396589291631422367361262415115121837412178585592287169858210020969161771830842579745360462792019608011639872984330943977063269966943474772865114131255717447905531474229802532044068660360456893054575436566915238490309883
512447157769228304131256323740835904819759921673225154827094436771226096325013237418054628602994336075764089916228418424306832707597853204209771112842072708289338794604081011427030629039302332957025365167149233660135959038245478352895374943727331531173885009715832998171386546136367093686989913049831
969850455230698192652261474515788687418941545125366868561633605148672698351493104516166153304063487537678627945130392397105464048856577407056079471349982831692582998623711436409450154130174976181809303563157487873504380599234293660083773732553256060917095555110841495582128346683005794423459984157739

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
#include #include using namespace std; typedef int LL; typedef pair PLL; LL inv(LL t, LL p) {//求t关于p的逆元 if (t >= p) t = t%p; return t == 1 ? 1 : (p - p / t) * inv(p % t, p) % p; } LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } PLL linear(LL A[], LL B[], LL M[], int n) {//求解A[i]x = B[i] (mod M[i]),总共n个线性方程组 LL x = 0, m = 1; for (int i = 0; i < n; i++) { LL a = A[i] * m, b = B[i] - A[i] * x, d =gcd(M[i], a); if (b % d != 0) return PLL(0, -1);//答案不存在,返回-1 LL t = b / d * inv(a / d, M[i] / d) % (M[i] / d); x = x + m*t; m *= M[i] / d; } x = (x % m + m) % m; return PLL(x, m);//返回的x就是答案,m是最后的lcm值 } int main() { int n; scanf_s("%d", &n); LL a[2017], b[2017], m[2017]; for (int i = 0; i<n; i++) { scanf_s("%d%d%d", &a[i], &b[i], &m[i]); } PLL pa = linear(a, b, m, n); printf("%lld\n", pa.first); } 设计思路: 有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?” 解这题,先构造一个答案 5*7*inv(5*7, 3) % 3 = 1 3*7*inv(3*7, 5) % 5 = 1 3*5*inv(3*5, 7) % 7 = 1 然后两边同乘你需要的数 2 * 5*7*inv(5*7, 3) % 3 = 2 3 * 3*7*inv(3*7, 5) % 5 = 3 2 * 3*5*inv(3*5, 7) % 7 = 2 令 a = 2 * 5*7*inv(5*7, 3) b = 3 * 3*7*inv(3*7, 5) c = 2 * 3*5*inv(3*5, 7) 那么 a % 3 = 2 b % 5 = 3 c % 7 = 2 其实答案就是a+b+c 因为 a%5 = a%7 = 0 因为a是5的倍数,也是7的倍数 b%3 = b%7 = 0 因为b是3的倍数,也是7的倍数 c%3 = c%5 = 0 因为c是3的倍数,也是5的倍数 所以 (a + b + c) % 3 = (a % 3) + (b % 3) + (c % 3) = 2 + 0 + 0 = 2 (a + b + c) % 5 = (a % 5) + (b % 5) + (c % 5) = 0 + 3 + 0 = 3 (a + b + c) % 7 = (a % 7) + (b % 7) + (c % 7) = 0 + 0 + 2 = 2 答案a+b+c完全满足题意 但是答案,不只一个,有无穷个,每相隔105就是一个答案(105 = 3 * 5 * 7) a=2*5*7*2=140 b=3*3*7*1=63 c=2*3*5*1=30 140+63+30=233 2335 = 23 如果题目问你最小的那个答案,那就是23了。 当 1*x=2(%3) 1*x=3(%5) 1*x=2(%7) 输入: 3 1 2 3 1 3 5 1 2 7 输出: 23

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值