凸包问题(枚举)

凸包的定义,直观的来看就是,由平面上n个点组成的集合,其凸包就是包含这些点的最小凸多边形,凸多边形的任何一条边所在的直线把凸多边形全部划在了同一个半平面内。

性质:如果点集中两个点的连线属于凸多边形的边,当且仅当点集中其余的点都在这两个点连线的同一侧。利用这个性质,可以求解凸包问题。若已知由n个点构成集合的凸包是以其中某些点为顶点的凸多边形(这个凸多边形一定是最小凸多边形),且这些点具有凸包的性质,则它们之间的某些连线共同构成了凸包的全部边。

解题思路:利用数学中两点确定一条直线的方程枚举求解。

#include<stdio.h>
#include<stdlib.h>
#include<time.h>

struct Point
{
	int x,y,flag;
}; 

struct Point point[100];

void random(int n)
{
	srand(time(NULL));
	for(int i=0;i<n;i++)
	{
		point[i].x=1+rand()%10;
		point[i].y=1+rand()%10;
	}
} 

void ConvexHull(int n)
{
	int sum=0;
	int sign1,sign2;
	int a,b,c;
	for(int i=0;i<n;i++)
		for(int j=i+1;j<n;j++)
		{
			a=
			point[j].y-point[i].y;
			b=point[j].x-point[i].x;
			c=(point[i].x*point[j].y)-(point[i].y*point[j].x);
			sign1=0;
			sign2&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值