j-vector(Multi-Task Learning for Text-dependent Speaker Verification)

本文采用多任务学习方法,在学习说话人特征的同时,学习文本短语的知识,进行text-dependent的说话人识别

实现流程
在这里插入图片描述

采用多任务学习,目标函数为:
在这里插入图片描述

C代表交叉熵,y1,y2代表了真实标签,y1,y2,是模型输出,共享的参数可由两个目标函数共同优化。
测试时将输出层去掉,取输出的平均值,所得即为j-vector。
最后使用PLDA进行打分。

实验
在这里插入图片描述

与原始的d-vector、r-vector相比,j-vector取得了较好的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值