B. Working out(cf) (dp方程+技巧)

B. Working out

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Summer is coming! It's time for Iahub and Iahubina to work out, as they both want to look hot at the beach. The gym where they go is a matrix a with n lines and m columns. Let number a[i][j] represents the calories burned by performing workout at the cell of gym in the i-th line and the j-th column.

Iahub starts with workout located at line 1 and column 1. He needs to finish with workout a[n][m]. After finishing workout a[i][j], he can go to workout a[i + 1][j] or a[i][j + 1]. Similarly, Iahubina starts with workout a[n][1] and she needs to finish with workout a[1][m]. After finishing workout from cell a[i][j], she goes to either a[i][j + 1] or a[i - 1][j].

There is one additional condition for their training. They have to meet in exactly one cell of gym. At that cell, none of them will work out. They will talk about fast exponentiation (pretty odd small talk) and then both of them will move to the next workout.

If a workout was done by either Iahub or Iahubina, it counts as total gain. Please plan a workout for Iahub and Iahubina such as total gain to be as big as possible. Note, that Iahub and Iahubina can perform workouts with different speed, so the number of cells that they use to reach meet cell may differs.

Input

The first line of the input contains two integers n and m (3 ≤ n, m ≤ 1000). Each of the next n lines contains m integers: j-th number from i-th line denotes element a[i][j] (0 ≤ a[i][j] ≤ 105).

Output

The output contains a single number — the maximum total gain possible.

Examples

input

Copy

3 3
100 100 100
100 1 100
100 100 100

output

Copy

800

Note

Iahub will choose exercises a[1][1] → a[1][2] → a[2][2] → a[3][2] → a[3][3]. Iahubina will choose exercises a[3][1] → a[2][1] → a[2][2] → a[2][3] → a[1][3]

解题思路

题目大意: 
有n*m个格子, 走过一个格子可以得到相应的分数. 
A 从(1,1)沿 下 或 右 走到(n,m) 
B 从(n,1)沿 上 或 右 走到(1,m) 
两人路径有且只能有一个格子重合(重合格子的分数不算), 求两人分数之和的最大值.

首先要保证只有一个格子重合,那么只可能是以下两种情况: 
1) A向右走,相遇后继续向右走,而B向上走,相遇后继续向上走 
2) A向下走,相遇后继续向下走,而B向右走,相遇后继续向右走

接着枚举相遇的格子(i,j)即可,考虑四个方向的dp

dp1[i][j] := 从 (1, 1) 到 (i, j) 的最大分数 
dp2[i][j] := 从 (i, j) 到 (n, m) 的最大分数 
dp3[i][j] := 从 (n, 1) 到 (i, j) 的最大分数 
dp4[i][j] := 从 (i, j) 到 (1, m) 的最大分数

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e3+5;
int a[maxn][maxn];
int dp1[maxn][maxn];//(1,1)-(i,j)
int dp2[maxn][maxn];//(i,j)-(1,1)
int dp3[maxn][maxn];//(n,1)-(i,j)
int dp4[maxn][maxn];//(i,j)-(n,1)
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++) scanf("%d",&a[i][j]);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++) dp1[i][j]=a[i][j]+max(dp1[i][j-1],dp1[i-1][j]);
    for(int i=n;i>=1;i--)
        for(int j=m;j>=1;j--)
        dp2[i][j]=a[i][j]+max(dp2[i][j+1],dp2[i+1][j]);
    for(int i=n;i>=1;i--)
        for(int j=1;j<=m;j++)
        dp3[i][j]=a[i][j]+max(dp3[i+1][j],dp3[i][j-1]);
    for(int i=1;i<=n;i++)
        for(int j=m;j>=1;j--)
        dp4[i][j]=a[i][j]+max(dp4[i][j+1],dp4[i-1][j]);
    int ans=0;
    for(int i=2;i<n;i++)
    for(int j=2;j<m;j++)
    {
        ans=max(ans,dp1[i][j-1]+dp2[i][j+1]+dp3[i+1][j]+dp4[i-1][j]);
        ans=max(ans,dp3[i][j-1]+dp4[i][j+1]+dp2[i+1][j]+dp1[i-1][j]);
    }
    printf("%d\n",ans);
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值