B. Working out
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Summer is coming! It's time for Iahub and Iahubina to work out, as they both want to look hot at the beach. The gym where they go is a matrix a with n lines and m columns. Let number a[i][j] represents the calories burned by performing workout at the cell of gym in the i-th line and the j-th column.
Iahub starts with workout located at line 1 and column 1. He needs to finish with workout a[n][m]. After finishing workout a[i][j], he can go to workout a[i + 1][j] or a[i][j + 1]. Similarly, Iahubina starts with workout a[n][1] and she needs to finish with workout a[1][m]. After finishing workout from cell a[i][j], she goes to either a[i][j + 1] or a[i - 1][j].
There is one additional condition for their training. They have to meet in exactly one cell of gym. At that cell, none of them will work out. They will talk about fast exponentiation (pretty odd small talk) and then both of them will move to the next workout.
If a workout was done by either Iahub or Iahubina, it counts as total gain. Please plan a workout for Iahub and Iahubina such as total gain to be as big as possible. Note, that Iahub and Iahubina can perform workouts with different speed, so the number of cells that they use to reach meet cell may differs.
Input
The first line of the input contains two integers n and m (3 ≤ n, m ≤ 1000). Each of the next n lines contains m integers: j-th number from i-th line denotes element a[i][j] (0 ≤ a[i][j] ≤ 105).
Output
The output contains a single number — the maximum total gain possible.
Examples
input
Copy
3 3
100 100 100
100 1 100
100 100 100
output
Copy
800
Note
Iahub will choose exercises a[1][1] → a[1][2] → a[2][2] → a[3][2] → a[3][3]. Iahubina will choose exercises a[3][1] → a[2][1] → a[2][2] → a[2][3] → a[1][3]
解题思路
题目大意:
有n*m个格子, 走过一个格子可以得到相应的分数.
A 从(1,1)沿 下 或 右 走到(n,m)
B 从(n,1)沿 上 或 右 走到(1,m)
两人路径有且只能有一个格子重合(重合格子的分数不算), 求两人分数之和的最大值.
首先要保证只有一个格子重合,那么只可能是以下两种情况:
1) A向右走,相遇后继续向右走,而B向上走,相遇后继续向上走
2) A向下走,相遇后继续向下走,而B向右走,相遇后继续向右走
接着枚举相遇的格子(i,j)即可,考虑四个方向的dp
dp1[i][j] := 从 (1, 1) 到 (i, j) 的最大分数
dp2[i][j] := 从 (i, j) 到 (n, m) 的最大分数
dp3[i][j] := 从 (n, 1) 到 (i, j) 的最大分数
dp4[i][j] := 从 (i, j) 到 (1, m) 的最大分数
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e3+5;
int a[maxn][maxn];
int dp1[maxn][maxn];//(1,1)-(i,j)
int dp2[maxn][maxn];//(i,j)-(1,1)
int dp3[maxn][maxn];//(n,1)-(i,j)
int dp4[maxn][maxn];//(i,j)-(n,1)
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++) scanf("%d",&a[i][j]);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++) dp1[i][j]=a[i][j]+max(dp1[i][j-1],dp1[i-1][j]);
for(int i=n;i>=1;i--)
for(int j=m;j>=1;j--)
dp2[i][j]=a[i][j]+max(dp2[i][j+1],dp2[i+1][j]);
for(int i=n;i>=1;i--)
for(int j=1;j<=m;j++)
dp3[i][j]=a[i][j]+max(dp3[i+1][j],dp3[i][j-1]);
for(int i=1;i<=n;i++)
for(int j=m;j>=1;j--)
dp4[i][j]=a[i][j]+max(dp4[i][j+1],dp4[i-1][j]);
int ans=0;
for(int i=2;i<n;i++)
for(int j=2;j<m;j++)
{
ans=max(ans,dp1[i][j-1]+dp2[i][j+1]+dp3[i+1][j]+dp4[i-1][j]);
ans=max(ans,dp3[i][j-1]+dp4[i][j+1]+dp2[i+1][j]+dp1[i-1][j]);
}
printf("%d\n",ans);
}