时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 32768K,其他语言65536K
64bit IO Format: %lld
题目描述
这是一个加强版的斐波那契数列。
给定递推式
求F(n)的值,由于这个值可能太大,请对109+7取模。
输入描述:
第一行是一个整数T(1 ≤ T ≤ 1000),表示样例的个数。 以后每个样例一行,是一个整数n(1 ≤ n ≤ 1018)。
输出描述:
每个样例输出一行,一个整数,表示F(n) mod 1000000007。
示例1
输入
4 1 2 3 100
输出
1 16 57 558616258
(i+1)^3=i^3+3*i^2+3*i+1,(i+1)^2=i^2+2*i+1.所造成的矩阵为:
f[i] = 1 1 1 1 1 1 f[i-1]
f[i-1] = 1 0 0 0 0 0 f[i-2]
(i+1)^3 = 0 0 1 3 3 1 i^3
(i+1)^2 = 0 0 0 1 2 1 i^2
i + 1 = 0 0 0 0 1 1 i
1 = 0 0 0 0 0 1 1
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int mod=1000000007;
ll t,n;
struct mat{
ll m[6][6];
mat(){
memset(m,0,sizeof(m));
}
};
mat mul(mat &A,mat &B){
mat C;
for(int i=0;i<6;i++)
for(int j=0;j<6;j++)
for(int k=0;k<6;k++)
C.m[i][j]=(C.m[i][j]+A.m[i][k]*B.m[k][j])%mod;
return C;
}
mat pow(mat A,ll n){
mat B;
for(int i=0;i<6;i++)
B.m[i][i]=1;
while(n){
if(n&1) B=mul(B,A);
A=mul(A,A);
n>>=1;
}
return B;
}
int main(){
scanf("%lld",&t);
while(t--){
mat A;
for(int i=0;i<6;i++) A.m[0][i]=1;
A.m[1][0]=A.m[2][2]=A.m[2][5]=A.m[3][3]=A.m[3][5]=A.m[4][4]=A.m[4][5]=A.m[5][5]=1;
A.m[2][3]=A.m[2][4]=3;A.m[3][4]=2;
scanf("%lld",&n);
mat B=pow(A,n);
printf("%lld\n",(B.m[1][0]+B.m[1][2]*8+B.m[1][3]*4+B.m[1][4]*2+B.m[1][5])%mod);
}
}