G 又见斐波那契 (矩阵构造+矩阵快速幂)

时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 32768K,其他语言65536K
64bit IO Format: %lld

题目描述 

这是一个加强版的斐波那契数列。

给定递推式

求F(n)的值,由于这个值可能太大,请对109+7取模。

输入描述:

第一行是一个整数T(1 ≤ T ≤ 1000),表示样例的个数。
以后每个样例一行,是一个整数n(1 ≤ n ≤ 1018)。

输出描述:

每个样例输出一行,一个整数,表示F(n) mod 1000000007。

示例1

输入

4
1
2
3
100

输出

1
16
57
558616258

(i+1)^3=i^3+3*i^2+3*i+1,(i+1)^2=i^2+2*i+1.所造成的矩阵为:

f[i]        =       1 1 1 1 1 1             f[i-1]

f[i-1]     =      1 0 0 0 0 0              f[i-2]

(i+1)^3  =      0 0 1 3 3 1               i^3

(i+1)^2  =      0 0 0 1 2 1                i^2

i + 1      =      0 0 0 0 1 1                i

1           =      0 0 0 0 0 1                1

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int mod=1000000007;
ll t,n;
struct mat{
    ll m[6][6];
    mat(){
        memset(m,0,sizeof(m));
    }
};
mat mul(mat &A,mat &B){
    mat C;
    for(int i=0;i<6;i++)
        for(int j=0;j<6;j++)
            for(int k=0;k<6;k++)
                C.m[i][j]=(C.m[i][j]+A.m[i][k]*B.m[k][j])%mod;
    return C;
}
mat pow(mat A,ll n){
    mat B;
    for(int i=0;i<6;i++)
        B.m[i][i]=1;
    while(n){
        if(n&1) B=mul(B,A);
        A=mul(A,A);
        n>>=1;
    }
    return B;
}
int main(){
    scanf("%lld",&t);
    while(t--){
        mat A;
        for(int i=0;i<6;i++) A.m[0][i]=1;
        A.m[1][0]=A.m[2][2]=A.m[2][5]=A.m[3][3]=A.m[3][5]=A.m[4][4]=A.m[4][5]=A.m[5][5]=1;
        A.m[2][3]=A.m[2][4]=3;A.m[3][4]=2;
        scanf("%lld",&n);
        mat B=pow(A,n);
        printf("%lld\n",(B.m[1][0]+B.m[1][2]*8+B.m[1][3]*4+B.m[1][4]*2+B.m[1][5])%mod);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值