大型电商数据库设计与分析-仿京东
女士电商平台素材页面
京东-主要参考页
天猫-商品详情页
蘑菇街
天猫-商城
天猫-视屏
京东–
表设计
一对多:多的一方创建表,并且一的一方作为外键。
sku&&spu
程序员的世界里:SPU 就是类,SKU就是对象。sku多见于前台的商品编号,spu多见于后台的商品管理。SPU 是由品牌+型号+关键属性构成的。SPU就是俗称的“款”;SKU就是商品的“件”。华为p30是spu,华为p30土豪金64G是sku
这件商品sku–有价格,重量,描述,图片,这件商品的名字,(颜色,容量,尺寸)—在类别的基本属性里面。
我们在分析数据,推广产品的时候会用到spu概念,比如那种商品比较受欢迎,销量好。
平台属性—是一个类别下的所有属性—由电商网站维护
销售属性—是一种商品下的所有属性—由商家维护
图1的1是爆款直降,图1的2是RTX2060,图1的3是GTX1650
这些海报用的都是同一spu的属性
首先通过检索搜索出来的商品列表中,每个商品都是一个sku。每个sku都有自己独立的库存数。也就是说每一个商品详情展示都是一个sku。
那spu又是干什么的呢?
如上图,一般的电商系统你点击进去以后,都能看到这个商品关联了其他好几个类似的商品,而且这些商品很多的信息都是共用的,比如商品图片,海报、销售属性等。
那么系统是靠什么把这些sku识别为一组的呢,那是这些sku都有一个公用的spu信息。而它们公共的信息,都放在spu信息下。
图中有两个图片信息表,其中spu_image表示整个spu相关下的所有图片信息,而sku_image表示这个spu下的某个sku使用的图片。sku_image中的图片是从spu_image中选取的。
但是由于一个spu下的所有sku的海报都是一样,所以只存一份spu_poster就可以了。
表结构分析过程
oms–订单管理
pms–商品管理
wms–库存管理
ums–用户管理
电商的商品管理数据结构:采取的都是sku+spu的数据结构
sku----stock keeping unit 最小存货单位【6核,黑色,16g内存–它是具体的商品–一个商品】
spu----standard product unit 标准产品单元【联想神级笔记本–它不是具体的商品–厂家不知道你要哪个型号,那种颜色,那种笔记本–它是抽象的—一种商品】
华为P30 就是一个 SPU,华为P30 红色 64G 就是一个 SKU
笔记本是一个类别
(联想)笔记本,(华硕)笔记本,(惠普)笔记本都是一个spu【字段有商品名,商品描述,商品所属类别—一对多:这种商品有很多属性(尺寸,版本,颜色,容量)----某种属性有很多属性值(13英寸,红色,64G)】
可以理解成xxx系列产品,比如:联想小新潮系列,图中展示的就是spu,对应字段有:【价格,重量,spu名字,spu描述,所属类别id,商品id】
联想(小新潮Air15轻薄本)( 15.6英寸,2.5k屏)(8G内存,512G存储)这些是sku—颜色,重量,尺寸,容量
选定类别,确定属性:
pms_base_attr_info
比如类别3:笔记本
那么它有属性:尺寸,内存,颜色
pms_base_attr_value
肯定还有属性值:尺寸【3,6,8寸】,内存【4,8,16G】,颜色【红,蓝,白】
pms_sku_info
商品价格【2999】,
名称【小米6 全网通 4GB+64GB 亮黑色 移动联通电信4G手机 双卡双】,重量【0.5kg】,
描述【商品名称:小米 小米6商品编号:4230919商品毛重:400.00g商品产地:中国大陆系统:安卓(Android)机身厚度:薄(7mm-8.5mm)拍照特点:光学变焦,后置双摄像头电池容量:3000mAh-3999mAh机身颜色:黑色系热点:快速充电运行内存:4GB前置摄像头像素:800万-1599万游戏配置:MIMO技术后置摄像头像素:1200万-1999万机身内存:64GB屏幕配置:全高清 FHD】,
类别【笔记本】
pms_sku_image
一个sku有很多图片
-
分类:
-
平台属性
spu