inner join,left join,cross join连接查询的区别,sql语句的执行顺序,以及sql语句各种写法的性能测试

内连接,外连接,交叉连接的运行过程及区别

使用from语句和交叉连接无条件多表联查时

 select * from A cross join B;
   -- 等价于
 select * from A, B;

二者都是先将两张表做笛卡尔积运算,形成一张大表。如果后面再有条件的话,再从大表里进行条件的过滤,筛选出符合条件的记录数。两张表做笛卡尔积,可以保证结构的完整性。但在实际应用中,我们只想它有针对性的快速的查出我们想要的数据。并不想它先将所有的组合都先列出来,再去做筛选。这样会导致数据量指数级别增长,导致内存消耗,服务器负荷增加

使用inner join内连和left join左外连接关联查询

select * A  inner join B on/where A.id=B.aid and ......

i n n e r j o i n 内 连 接 \color{red}{ inner join内连接} innerjoin---------对数据有精确要求的地方使用它。

原理
(1)从第一张表中取出一条记录,然后去另外一张表中进行匹配
(2)使用匹配条件进行匹配
(3)匹配成功,左表数据保留;匹配失败,左表数据被舍弃

select * A  left join B on/where A.id=B.aid and ......

l e f t j o i n 外 连 接 \color{red}{ left join外连接} leftjoin-------实际用的较多的联查方式。(1)外连接中主表数据记录一定会保存,连接之后不会出现记录数少于主表的情况(内连接可能)
注:外连接保证主表对应的记录数一定会存在那么多,绝对不会少。而内连接必须要匹配,只要在另一张表中匹配不到数据,就有可能达不到数据量

原理
(1)确定连接主表。左连接就是"left join"左边的表为主表,右连接就是"right join"右边的表为主表
(2)拿主表的每一条记录,去匹配另外一张表(从表)的每一条记录
(3)如果满足匹配条件,保留
(4)如果主表记录在从表中一条都没有匹配成功,也要保留主表的该条记录,从表对应的字段值都为空null

o n 条 件 , w h e r e 条 件 , h a v i n g 条 件 的 区 别 和 摆 放 位 置 \color{green}{on条件,where条件,having条件的区别和摆放位置} onwherehaving

  1. 在多表联接查询时,on比where更早起作用。系统首先根据各个表之间的联接条件,把多个表合成一个临时表后,再由where进行过滤,然后再计算,计算完后再由having进行过滤,由此可见,要想过滤条件起到正确的作用,首先要明白这个条件应该在什么时候起作用,然后再决定放在那里
  2. 所 有 的 连 接 条 件 都 必 需 要 放 在 O N 后 面 , 不 然 前 面 的 所 有 L E F T , 和 R I G H T 关 联 将 作 为 摆 设 , 而 不 起 任 何 作 用 \color{red}{所有的连接条件都必需要放在ON后面,不然前面的所有LEFT,和RIGHT关联将作为摆设,而不起任何作用} ONLEFT,RIGHT详解如下:对于JOIN参与的表的关联操作,如果需要不满足连接条件的行也在我们的查询范围内的话,我们就必需把连接条件放在ON后面,而不能放在WHERE后面,如果我们把连接条件放在了WHERE后面,那么所有的LEFT,RIGHT,等这些操作将不起任何作用,对于这种情况,它的效果就完全等同于INNER连接。对于那些不影响选择行的条件,放在ON或者WHERE后面就可以。
  3. on、where、having这三个都可以加条件的子句中,on是最先执行,where次之,having最后。有时候如果这先后顺序不影响中间结果的话,那最终结果是相同的。但因为on是先把不符合条件的记录过滤后才进行统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的。
    根据上面的分析,可以知道where也应该比having快点的,因为它过滤数据后才进行sum,所以having是最慢的。但也不是说having没用,因为有时在步骤3还没出来都不知道那个记录才符合要求时,就要用having了。
    在两个表联接时才用on的,所以在一个表的时候,就剩下where跟having比较了。在这单表查询统计的情况下,如果要过滤的条件没有涉及到要计算字段,那它们的结果是一样的,只是where可以使用rushmore技术,而having就不能,在速度上后者要慢。
    如果要涉及到计算的字段,就表示在没计算之前,这个字段的值是不确定的,根据上篇写的工作流程,where的作用时间是在计算之前就完成的,而having就是在计算后才起作用的,所以在这种情况下,两者的结果会不同。

语句1:关联时使用where,不是用on

select * A left/inner join B where A.id=B.aid and A.age>20

语句2:关联时使用on

select * A left/inner join B on A.id=B.aid where A.age>20

从上述对比中:语句1用where代替了on,这就相当于两表内连接/左外连接无连接条件的限制,那么它做的就是一个笛卡尔积操作。而非内连接/左外连接操作,其left join/inner join就失效了,它就等同于交叉连接了

sql语句的执行顺序

(1)from
(2) on
(3) join
(4) where
(5)group by(开始使用select中的别名,后面的语句中都可以使用)
(6) avg,sum…
(7)having

(8) select
(9) distinct
(10) order by
(11) limit

流程分析

注意:每个步骤都会为下一个步骤生成一个虚拟表,这个虚拟表将作为下一个执行步骤的输入。

第一步:首先对from子句中的前两个表执行一个笛卡尔乘积,此时生成虚拟表 vt1(选择相对小的表做基础表)【如果from子句中的表只有一个表,则直接以此作为基础表生成虚拟表 vt1,----如果 from 子句中的表数目多余两个表,那么就将from,on,join三步走之后生成的vt3和第三个表连接从而计算笛卡尔乘积,生成虚拟表v4,该过程就是一个重复1-3的步骤,最终得到一个新的虚拟表 vt4。】

第二步:接下来便是应用on筛选器,on 中的逻辑表达式将应用到 vt1 中的各个行,筛选出满足on逻辑表达式的行,生成虚拟表 vt2 
第三步:如果是outer join 那么这一步就将添加外部行,left outer jion 就把左表在第二步中过滤的添加进来,如果是right outer join 那么就将右表在第二步中过滤掉的行添加进来,这样生成虚拟表 vt3 

 
第四步:如果 from 子句中的表数目多余两个表,那么就将vt3和第三个表连接从而计算笛卡尔乘积,生成虚拟表,该过程就是一个重复1-3的步骤,最终得到一个新的虚拟表 vt3。 


第五步:应用where筛选器,对上一步生产的虚拟表引用where筛选器,生成虚拟表vt4,在这有个比较重要的细节不得不说一下,对于包含outer join子句的查询,就有一个让人感到困惑的问题,到底在on筛选器还是用where筛选器指定逻辑表达式呢?on和where的最大区别在于,如果在on应用逻辑表达式那么在第三步outer join中还可以把移除的行再次添加回来,而where的移除的最终的。举个简单的例子,有一个学生表(班级,姓名)和一个成绩表(姓名,成绩),我现在需要返回一个x班级的全体同学的成绩,但是这个班级有几个学生缺考,也就是说在成绩表中没有记录。为了得到我们预期的结果我们就需要在on子句指定学生和成绩表的关系(学生.姓名=成绩.姓名)那么我们是否发现在执行第二步的时候,对于没有参加考试的学生记录就不会出现在vt2中,因为他们被on的逻辑表达式过滤掉了,但是我们用left outer join就可以把左表(学生)中没有参加考试的学生找回来,因为我们想返回的是x班级的所有学生,如果在on中应用学生.班级='x'的话,left outer join会把x班级的所有学生记录找回(感谢网友康钦谋__康钦苗的指正),所以只能在where筛选器中应用学生.班级='x' 因为它的过滤是最终的。 

第六步:group by 子句将中的唯一的值组合成为一组,得到虚拟表vt5。如果应用了group by,那么后面的所有步骤都只能得到的vt5的列或者是聚合函数(count、sum、avg等)。原因在于最终的结果集中只为每个组包含一行。这一点请牢记。 

第七步:应用cube或者rollup选项,为vt5生成超组,生成vt6. 
第八步:应用having筛选器,生成vt7。having筛选器是第一个也是为唯一一个应用到已分组数据的筛选器。 
第九步:处理select子句。将vt7中的在select中出现的列筛选出来。生成vt8. 

第十步:应用distinct子句,vt8中移除相同的行,生成vt9。事实上如果应用了group by子句那么distinct是多余的,原因同样在于,分组的时候是将列中唯一的值分成一组,同时只为每一组返回一行记录,那么所以的记录都将是不相同的。 

第十一步:应用order by子句。按照order_by_condition排序vt9,此时返回的一个游标,而不是虚拟表。sql是基于集合的理论的,集合不会预先对他的行排序,它只是成员的逻辑集合,成员的顺序是无关紧要的。对表进行排序的查询可以返回一个对象,这个对象包含特定的物理顺序的逻辑组织。这个对象就叫游标。正因为返回值是游标,那么使用order by 子句查询不能应用于表表达式。排序是很需要成本的,除非你必须要排序,否则最好不要指定order by,最后,在这一步中是第一个也是唯一一个可以使用select列表中别名的步骤。 

第十二步:应用top选项。此时才返回结果给请求者即用户。

下面是我对上述分析做的实验验证:

首先我的数据库里有三张表

select count(*) from information_schema.COLUMNS where table_name='sys_order'

order表有38个字段
在这里插入图片描述
order_item表有13个字段在这里插入图片描述
sys_supplies有53个字段
在这里插入图片描述
和起来有104个字段,总共有(244+423+277)条记录

select * from sys_order o, sys_order_item i,sys_supplies s where i.OD_ID=o.ID and s.ID=i.SP_ID

select *
from sys_order o
INNER JOIN sys_order_item i
INNER JOIN sys_supplies s
where i.OD_ID=o.ID and s.ID=i.SP_ID

select *
from sys_order o
INNER JOIN sys_order_item i ON i.OD_ID=o.ID
INNER JOIN sys_supplies s ON s.ID=i.SP_ID

select o.EXEC_DEPT_CODE,i.B_O_ID,s.H_ID
from sys_order o
left JOIN sys_order_item i ON i.OD_ID=o.ID
left JOIN sys_supplies s ON s.ID=i.SP_ID

select o.F_O_ID from sys_order o

参考文章:
《10-MySQL–连接查询(交叉连接+内连接+外连接+自然连接)+using关键字+多表连接》, 一起来围观吧 https://blog.csdn.net/ruyu00/article/details/85057797

on条件与where条件的区别》, 一起来围观吧 https://blog.csdn.net/xc008/article/details/2872310

《关于sql和MySQL的语句执行顺序(必看!!!)》, 一起来围观吧 https://blog.csdn.net/u014044812/article/details/51004754

<think>好的,用户现在问的是关于SQLJOIN语句的详细用法。之前他们询问过如何联接两个不同表的查询结果,我给出了横向纵向的方法,重点讲了JOINUNION。现在用户可能想更深入了解JOIN的各种类型使用场景,或者在实际操作中遇到了问题。 首先,我需要确定用户的需求是什么。他们可能已经了解基本的JOIN概念,但需要更详细的指导,比如不同JOIN类型的区别、语法、示例以及常见错误。考虑到用户之前的问题,他们可能是刚开始学习SQL,或者在工作中需要处理多个表的数据合并。 接下来,我应该回顾之前的回答,确保这次的内容不重复,但更深入。之前已经介绍了INNER JOINLEFT JOIN、FULL OUTER JOIN,以及UNION,现在需要详细展开每个JOIN类型的用法,可能包括更多的示例注意事项。 需要注意用户是否对性能优化或复杂查询感兴趣。之前的回答提到了索引优化、字段选择等,这次可能需要更详细地解释这些优化策略,或者提供更多实际案例。 还要考虑用户可能的误区,比如混淆JOIN类型导致数据不准确,或者忘记ON条件导致笛卡尔积。应该强调常见错误及解决方法,比如列名歧义、NULL值处理等。 另外,用户可能希望看到不同JOIN类型的可视化示意图,帮助理解数据如何连接。虽然文本中无法插入图片,但可以用文字描述或符号模拟示意图的效果。 需要确保回答结构清晰,分点说明,便于用户逐步理解。可能的结构包括:基本语法、各种JOIN类型详解、使用场景、性能优化、常见错误实战案例。 最后,检查是否覆盖了所有JOIN类型(如CROSS JOIN、SELF JOIN),以及是否提到了特殊用法,比如多表连接、带条件的JOIN。确保示例代码正确,并符合之前提到的LaTeX格式要求,使用$$包裹独立代码块,行内代码用$符号。 可能还需要补充一些高级技巧,比如使用别名、在JOIN中使用子查询、以及如何处理复合键连接。同时,提醒用户注意数据类型匹配索引的重要性。 总结,用户需要的是一个全面、结构清晰、包含详细示例实用技巧的JOIN语句指南,帮助他们解决实际中的数据处理问题,并避免常见错误。</think>以下是 SQL 中 `JOIN` 语句的 **详细用法解析**,包含语法、场景、示意图及实战示例: --- ### 一、JOIN 基础概念 **作用**:根据关联条件,将多个表的行/列合并 **核心要素**: - **关联字段**:两个表中逻辑关联的列(如 `user.id = order.user_id`) - **连接类型**:决定如何匹配保留数据(INNER/LEFT/RIGHT/FULL JOIN) --- ### 二、6 种 JOIN 类型详解 #### 1. **INNER JOIN(内连接)** - **语法**: ```sql SELECT A.col1, B.col2 FROM TableA A INNER JOIN TableB B ON A.key = B.key; ``` - **行为**:仅返回 **两表均匹配** 的记录 - **示意图**: ``` TableA ∩ TableB(交集部分) ``` - **场景**:精确关联查询(如订单关联商品详情) #### 2. **LEFT JOIN(左连接)** - **语法**: ```sql SELECT A.col1, B.col2 FROM TableA A LEFT JOIN TableB B ON A.key = B.key; ``` - **行为**:返回 **左表全部记录** + 右表匹配记录(无匹配则填充 `NULL`) - **示意图**: ``` TableA ∪ (A∩B) ``` - **场景**:主表数据展示附带可选信息(如用户列表显示最近订单) #### 3. **RIGHT JOIN(右连接)** - **语法**:与 `LEFT JOIN` 对称,保留右表全部记录 - **实际建议**:可改用 `LEFT JOIN` 调换表顺序实现,更易读 #### 4. **FULL OUTER JOIN(全外连接)** - **语法**: ```sql SELECT A.col1, B.col2 FROM TableA A FULL OUTER JOIN TableB B ON A.key = B.key; ``` - **行为**:返回 **两表所有记录**(无匹配处填充 `NULL`) - **示意图**: ``` TableA ∪ TableB ``` - **场景**:合并两个数据集并保留所有原始记录(如合并新旧系统数据) #### 5. **CROSS JOIN(交叉连接)** - **语法**: ```sql SELECT A.color, B.size FROM Colors A CROSS JOIN Sizes B; ``` - **行为**:生成 **笛卡尔积**(所有可能的组合) - **场景**:生成组合选项(如颜色与尺寸的全组合) #### 6. **SELF JOIN(自连接)** - **语法**: ```sql SELECT A.employee, B.manager FROM Employees A LEFT JOIN Employees B ON A.manager_id = B.employee_id; ``` - **行为**:同一表内建立关联 - **场景**:层级关系查询(如员工-上级关系) --- ### 三、进阶用法 #### 1. **多表连接** ```sql SELECT O.order_id, U.user_name, P.product_name FROM Orders O INNER JOIN Users U ON O.user_id = U.user_id INNER JOIN Products P ON O.product_id = P.product_id; ``` #### 2. **复合条件连接** ```sql SELECT A.order_id, B.shipment_id FROM Orders A LEFT JOIN Shipments B ON A.order_id = B.order_id AND B.ship_date > '2023-01-01'; -- 同时过滤右表 ``` #### 3. **JOIN 中使用聚合函数** ```sql SELECT U.user_id, COUNT(O.order_id) AS order_count FROM Users U LEFT JOIN Orders O ON U.user_id = O.user_id GROUP BY U.user_id; ``` #### 4. **JOIN查询** ```sql SELECT A.dept_name, B.avg_salary FROM Departments A LEFT JOIN ( SELECT dept_id, AVG(salary) AS avg_salary FROM Employees GROUP BY dept_id ) B ON A.dept_id = B.dept_id; ``` --- ### 四、性能优化技巧 1. **索引策略**: - 为 `JOIN` 条件字段(如 `ON user.id = order.user_id`)创建索引 - 复合索引优先匹配连接条件字段 2. **过滤前置**: ```sql -- 优化前(先 JOIN 后过滤) SELECT * FROM Users U LEFT JOIN Orders O ON U.id = O.user_id WHERE U.country = 'China'; -- 优化后(先过滤再 JOIN) SELECT * FROM (SELECT * FROM Users WHERE country = 'China') U LEFT JOIN Orders O ON U.id = O.user_id; ``` 3. **避免 `SELECT *`**:明确指定所需字段,减少数据传输量 --- ### 五、常见错误及解决 | 问题现象 | 解决方案 | |---------------------------|-----------------------------------| | 重复列名歧义 | 使用 `表别名.列名`(如 `A.id`) | | 漏写 `ON` 导致笛卡尔积 | 检查是否遗漏关联条件 | | 数据类型不匹配 | 使用 `CAST()` 统一类型 | | 连接顺序影响结果 | 理解 `LEFT/RIGHT JOIN` 的方向性 | | `NULL` 值破坏关联 | 使用 `COALESCE(key, '')` 处理空值 | --- ### 六、实战演练 **场景**:统计每个用户的订单总数(包含无订单用户) ```sql SELECT U.user_id, U.user_name, COUNT(O.order_id) AS total_orders FROM Users U LEFT JOIN Orders O ON U.user_id = O.user_id GROUP BY U.user_id, U.user_name; ``` **结果示例**: ``` user_id | user_name | total_orders ----------------------------------- 1 | Alice | 3 2 | Bob | 0 -- LEFT JOIN 保留了无订单用户 3 | Charlie | 2 ``` --- 掌握这些技巧后,您可以: 1. 根据业务需求选择最合适的 `JOIN` 类型 2. 优化复杂查询的性能 3. 避免常见的数据关联陷阱 如果需要分析具体业务场景的 SQL 写法,欢迎提供表结构需求!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值