- 博客(21)
- 资源 (1)
- 收藏
- 关注
原创 如何通过控制反馈优化机器人动力学模型:基于实际数据调整参数
在带负载的状态下,如何从控制反馈(例如电机的角度、角速度、力矩等数据)中调整模型参数(如转动惯量、阻尼系数和重力系数),是一个非常有意义的研究问题。根据当前状态(例如当前角度、速度等),以及已知的模型参数(例如转动惯量、阻尼系数等),我们可以计算出模型的预测输出,通常是角加速度和力矩。在带负载的情况下,负载的质量和分布会影响机器人的转动惯量、阻尼和重力系数等。假设机器人在带负载的状态下运行时,我们希望根据实际控制过程中得到的反馈(例如电机的角度、角速度和力矩)来更新机器人动力学模型中的一些参数。
2024-12-05 15:30:30
771
原创 单电机三次曲线轨迹规划
通过三次曲线轨迹的平滑过渡,机器人能够在没有突变的情况下完成精确的运动。通过计算每个时刻的角度、速度和加速度,我们可以使用这个公式计算出相应的关节力矩,这对于实际控制非常重要,因为力矩直接决定了电机的控制信号。三次曲线轨迹规划的核心目标是通过一个平滑的三次多项式,来控制机器人的位置、速度和加速度。这个类的构造函数接受初始角度、目标角度、初始速度、目标速度、总时间和时间步长作为参数,计算出三次曲线的系数。类是核心部分,它负责实现三次曲线轨迹规划,并计算每个时刻的角度、速度、加速度和力矩。
2024-12-05 12:00:00
832
原创 深度学习项目实践——QQ聊天机器人(transformer)(三)功能实现的方法——NoneBot2插件结构与编写
在前两节中,我们详细讲解了QQ聊天的原理、QQ机器人的框架与环境配置的流程。本节将重点介绍NoneBot2的插件构成,以及如何从零开始编写一个属于自己的插件。
2024-08-31 17:08:00
1600
原创 深度学习项目实践——qq聊天机器人(transformer)(二)配置环境与部署
上一节我们讲解了qq聊天的原理和qq机器人的框架以及运行流程,这一节我们来讲怎么配置环境,部署qq机器人。
2024-08-31 16:10:52
1213
原创 深度学习学习经验——强化学习(rl)
我们将使用一个简单的神经网络作为我们的智能体,它将输入贪吃蛇游戏的状态,输出每个可能的动作的“价值”(即采取该行动的预期回报)。在强化学习中,我们通常使用Q-learning算法来训练这个网络。self.fc1 = nn.Linear(grid_size * grid_size, 128) # 第一层全连接层,输入大小为网格大小平方self.fc2 = nn.Linear(128, 64) # 第二层全连接层。
2024-08-25 22:51:38
994
2
原创 深度学习实践项目示例——电厂电能输出预测(transformer)
通过预测电厂电能输出,可以优化电力系统的调度和运行,提高电力系统的稳定性和效率。特征包括每小时平均的环境变量——环境温度(AT)、环境压力(AP)、相对湿度(RH)和排气真空(V),用于预测电厂的每小时净电能输出(PE)。使用Transformer模型来解决回归问题(如预测联合循环电厂的每小时净电能输出)需要对传统的Transformer架构进行一些调整。联合循环电厂同时使用燃气轮机和蒸汽轮机,相比传统的简单循环电厂,它能从相同的燃料中生产出多达50%的额外电力。以下是详细的代码和解释。
2024-08-24 23:43:25
1014
3
原创 深度学习学习经验——生成对抗网络(GAN)
GAN 通过两个网络——生成器(Generator)和判别器(Discriminator)的对抗训练来生成逼真的数据。
2024-08-23 16:12:33
2890
原创 深度学习学习经验——卷积神经网络(CNN)
卷积神经网络(Convolutional Neural Network, CNN)是深度学习中一种非常重要的模型结构,特别擅长处理图像数据。CNN 通过卷积操作和池化操作来自动提取图像的特征,并使用全连接层进行分类或回归等任务。
2024-08-23 14:39:57
1944
原创 深度学习学习经验——变换器(Transformer)
变换器(Transformer)是一种用于处理序列数据的深度学习模型,与循环神经网络(RNN)不同,它不依赖于顺序处理数据,而是依靠一种称为**注意力机制**(Attention Mechanism)的技术来捕捉序列中的依赖关系。Transformer 的核心组件包括 **自注意力**(Self-Attention)和 **多头注意力**(Multi-Head Attention),这些机制使 Transformer 能够在自然语言处理、机器翻译等任务中表现出色。
2024-08-23 13:59:54
1426
原创 深度学习学习经验——长短期记忆网络(LSTM)
长短期记忆网络(LSTM,Long Short-Term Memory)是一种特殊的循环神经网络(RNN),专为解决 RNN 中长期依赖问题而设计。
2024-08-23 13:17:38
1589
原创 深度学习学习经验——循环神经网络(RNN)
循环神经网络(Recurrent Neural Network, RNN)是一种适合处理序列数据的神经网络,它能够利用历史信息来预测当前输出,适用于时间序列预测、自然语言处理等任务。RNN 的关键在于它具有“记忆”功能,可以将前一时刻的信息传递到下一时刻。RNN 的这种特性主要体现在它的隐藏状态(Hidden State)和时间步长(Time Step)的循环更新机制上。
2024-08-23 11:48:45
1240
原创 深度学习学习经验——全连接神经网络(FCNN)
全连接神经网络(FCNN)是最基础的神经网络结构,它由多个神经元组成,这些神经元按照层级顺序连接在一起。每一层的每个神经元都与前一层的每个神经元连接。接待区交流区和结果区。
2024-08-22 17:22:59
2509
原创 深度学习学习经验——什么是深度学习
深度学习是机器学习的一个子领域,它使用多层神经网络来自动从大量数据中学习和提取特征。深度学习尤其适合处理大规模的数据,如图像、语音和文本等。基本概念神经网络:深度学习模型的核心是神经网络,灵感来源于人脑的结构和功能。神经网络由大量的节点(神经元)组成,这些节点通过连接(权重)相互传递信息。层:神经网络通常由多个层级组成。每一层对输入数据进行处理并将结果传递给下一层。最常见的层有输入层、隐藏层和输出层。深度:深度学习之所以得名,是因为它使用了多个隐藏层(即“深度”)。
2024-08-22 16:42:17
932
原创 [学习]简易搜索引擎的制作
bilibili视频:尝试使用python模拟搜索引擎工作原理,做一个简单的搜索引擎搜索引擎原理简单的来解释通过检索输入信息中的索引来返回索引对应的信息,所以主要的算法有两个:一是检索信息中是否存在索引,二是索引对应数据库中的信息。检索信息中是否存在索引博主是选择的直接扫描输入信息中是否包含索引库中的索引,非常简单暴力的方法。import list1 #list1指索引库keywords = input() if key not in list1():
2021-08-22 18:35:21
4650
1
kaggle题目-联合电厂电能输出预测数据集
2024-08-24
大型手写数字库MINST数据集
2024-08-23
用python实现TF-IDF算法
2022-10-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人