计算n x m的棋盘格子, 沿着各自边缘线从左上角走到右下角,总共有多少种走法. 要求不能走回头路,即:只能往右和往下走,不能往左和往上走。

语言C++ 

题目 : [编程题]201301 JAVA 题目2-3级

题目描述 : 

请编写一个函数(允许增加子函数),计算n x m的棋盘格子(n为横向的格子数,m为竖向的格子数)沿着各自边缘线从左上角走到右下角,总共有多少种走法,要求不能走回头路,即:只能往右和往下走,不能往左和往上走。

 

输入描述:

输入两个正整数

输出描述:

返回结果

示例:

        输入

2
2

        输出

6

OJ链接:https://www.nowcoder.com/questionTerminal/e2a22f0305eb4f2f9846e7d644dba09b
来源:牛客网

先吐槽一下, 这题目名字是个什么鬼.. 还有就是, 需要循环输入测试用例

已经好几次做题时怎么调试都死活通不过, 就是死在这个循环输入测试用例上面, 可气的是, 题目里根本不说啊, 有的题不用写循环就能通过, 有的必须写, 真是头都大了ヽ(#`Д´)ノ┌┛〃

分析 :

两种思路, 动态规划或者递归, 要注意的是, 路径走的是格子边缘西安, 并不是格子

1. 动态规划

这道题的动态规划解法较为简单, 利用的是子问题之间不独立,举个栗子, 在本题中, 即 3 x 4棋盘的走法数与 2 x 4 有

关. 本题可以根据前两个阶段有几种走法来导出本阶段有几种走法. 干想是不好想的, 既然题中有棋盘, 那我们就找一个, 由少

到多的找出规律, 写出状态转移方程

通过棋盘由小到多, 我们隐约发现, 从左上角到右下角的走法与左边的格子, 和上边的格子有关, 如果将格子看成一个二维数组的话, 就a[ i ][ j ] = a[ i-1][ j ] + a[ i ][ j-1]的关系,  为了确认是不是, 我们多画几个看一看

                   

我们已经能确认状态转移为a[ i ][ j ] = a[ i-1][ j ] + a[ i ][ j-1], 但起始第一行和第一列却只有前一个状态, 可以发现, 第一行或

第一列往后都是加一, 我们为了更好的满足状态转移方程, 可以给现有的棋盘加上起始行和起始列, 如下

可以看到这样一张表, 我们最该想到二维数组了, 现在就简化成了利用初始状态和状态方程填表的问题, 表的右下角的元素值

就是我们要的结果代码实现如下:

#include<iostream>
#include<vector>
using namespace std;
class Solution {
public:
    long long fun(int n, int m) {
        vector<vector<long long> > v;
        v.resize(n + 1, vector<long long>(m + 1));
        for (int i = 1; i < m + 1; ++i) {
            v[0][i] = 1;
        }
        for (int i = 1; i < n + 1; ++i) {
            v[i][0] = 1;
        }
        for (int i = 1; i < n + 1; ++i) {
            for (int j = 1; j < m + 1; ++j) {
                v[i][j] = v[i - 1][j] + v[i][j - 1];//状态转移方程
            }
        }
        return v[n][m];
    }
};
int main() {
    int n, m;
    Solution f;
    while (cin >> n >> m) {
        cout << f.fun(n, m) << endl;
    }
    system("pause");
    return 0;
}

这种解法还可以简化一下, 用一维数组来做, 思路也是一样的不过每次填的数字会覆盖掉原来的值, 如下 :

#include<iostream>
#include<string>
#include<vector>
using namespace std;
class Solution {
public:
	long long fun(int n, int m) {
		vector<long long> v;
		v.resize(m + 1, 1);
		for (int i = 1; i < n + 1; ++i) {
			for (int j = 1; j < m + 1; ++j) {
				v[j] += v[j - 1];
			}
		}
		return v[m];
	}
};
int main() {
	int n, m;
	Solution f;
	while (cin >> n >> m) {
		cout << f.fun(n, m) << endl;
	}
	system("pause");
	return 0;
}

2. 递归

递归也一样, 需要先知道其状态转移方程,  也就是f( i, j ) = f( i - 1, j ) + f( i, j - 1 ), 同样, 和递归一样也需要注意边界问题, 当棋

盘的行或者列(即这里的i, j)有一个为0时, 即左上角和右下角重合时, 只有一种走法, 这就是递归结束条件


PS: 递推关系必须是从次小的问题开始到较大的问题之间的转化,从这个角度来说,动态规划往往可以用递归程序来实

现,不过因为递推可以充分利用前面保存的子问题的解来减少重复计算,所以对于大规模问题来说,有递归不可比拟的优

势,这也是动态规划算法的核心之处。

比如输入20, 20, 动规可以秒出, 递归嘛, 算了好长时间都没算出来.....

来祭出代码

#include<iostream>
#include<string>
#include<vector>
using namespace std;
class Solution {
public:
	long long fun(int n, int m) {
		if (n == 0 || m == 0) {
			return 1;
		}
		return fun(n - 1, m) + fun(n, m - 1);
	}
};
int main() {
	int n, m;
	Solution f;
	while (cin >> n >> m) {
		cout << f.fun(n, m) << endl;
	}
	system("pause");
	return 0;
}

 

  • 6
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值