请计算n*m的棋盘格子(n为横向的格子数,m为竖向的格子数),从棋盘左上角出发
沿着边缘线从左上角走到右下角,总共有多少种走法,要求不能走回头路
即:只能往右和往下走,不能往左和往上走
注:沿棋盘格之间的边缘线走
数据范围:1<=n,m<=8
输入描述:输入两个正整数n和m,用空格隔开
输出描述:输出结果
每个棋盘都可以由向右走和向下走变为更小的棋盘,而缩小到最后无非是三种情况:
1 * 1:2种走法
1 * 2和2 * 1:3种走法
走到棋盘边缘:只能直着走,也就是只能往下或者往右——1种走法
public static int gz(int x,int y){//xy表示行和列
if((x==1&&y==2)||(x==2&&y==1)){//1*2和2*1都是只有3种走法
return 3;
}
if(x==1&&y==1){//1*1是2种走法
return 2;
}
if(x==0||y==0){//走到最右边或最下边,就只能直着走了
return 1;
}
return gz(x,y-1)+gz(x-1,y);//向右递归和向下递归
}
public static void main(String[] args) {
Scanner scanner=new Scanner(System.in);
int n=scanner.nextInt();//列
int m=scanner.nextInt();//行
System.out.println(gz(m,n));
}