一种基于暗通道优先的自动白平衡算法的实现。

本文介绍了一种利用暗通道先验的自动白平衡算法,该算法能有效解决过曝情况下的白平衡问题。通过实现出流、回写sensorAWBgain,并结合自己实现的demosaic和AWB算法,达到了可用的白平衡效果。虽然无需WBCALIBRATION,但需要适当地AE调节亮度,并存在低色温和特定光照条件下的色彩偏差问题。未来计划通过改进白点寻找和色温估计进行优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一种基于暗通道优先的自动白平衡算法。

本文基于论文(与其复制一遍不如大家直接去看):https://www.oejournal.org/article/doi/10.12086/oee.2018.170549

该白平衡算法基于何恺明博士的暗通道先验的去雾算法。
将光透射率图中的有效值作为白点区域,有效地解决了过曝情况下的白平衡失效问题。
本文旨在验证其有效性,在实现出流,回写sensor AWBgain的情况下接入自己实现的demosaic(RGB-IR 双线性插值)转成RGB的后接入自己实现的该AWB算法,白平衡效果达到可用程度(未做CCM),纯C实现未调用opencv,(未OPENGL GPU或SSE CPU优化)效果如下:
在这里插入图片描述
说明:此方法无需进行WB CALIBRATION,可看作是GW方法或者PR的一种优化,适合用于面向非人眼观察的应用场景,现存的问题是需要AE调节到一个合适的亮度,不然白点寻找会过少,并且在低色温,A以及HZ光下,可能会将整幅图矫正成灰色,除了极低色温,其他色温矫正基本准确。

由于此方法无需进行WB CALIBRATION,寻找白点的误差无法从根本上解决,因此无法准确的通过R/B以及B/G获得色温曲线,进而后续CCM的矫正也会有些问题,后续会通过集成白点的方法对找到的暗通道白点进一步进行判断,并且引入色温估计进行优化。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值