数理统计完全教程作业1

2.3. 引理证明:

  1. P ( X = x ) = F ( x ) − F ( x − ) , 其 中 , F ( x − ) = lim y → x F ( y ) . \mathbb{P}(X=x)=F(x)-F(x^{-}),其中,F(x^{-})=\mathop{\text{lim}}\limits_{y \to x}F(y). P(X=x)=F(x)F(x)F(x)=yxlimF(y).
    证 : 根 据 中 值 定 理 F ( x ) − F ( x − ) = ∫ x − x f ( x ) d x = f ( x ) 证:根据中值定理F(x)-F(x^{-})=\int_{x^{-}}^{x}f(x)dx=f(x) :F(x)F(x)=xxf(x)dx=f(x)
    因 为 P ( X = x ) = f ( x ) \qquad因为P(X=x)=f(x) P(X=x)=f(x)
    得 P ( X = x ) = F ( x ) − F ( x − ) \qquad得P(X=x)=F(x)-F(x^{-}) P(X=x)=F(x)F(x)
  2. P ( x < X ⩽ y ) = F ( y ) − F ( x ) . \mathbb{P}(x< X \leqslant y)=F(y)-F(x). P(x<Xy)=F(y)F(x).
    证 : P ( x < X ⩽ y ) = ∫ x y f ( x ) d x = ∫ − ∞ y f ( x ) d x − ∫ − ∞ x f ( x ) d x = F ( y ) − F ( x ) 证:\mathbb{P}(x<X\leqslant y)=\int_{x}^{y}f(x)dx= \int_{-\infty}^{y}f(x)dx- \int_{-\infty}^{x}f(x)dx=F(y)-F(x) P(x<Xy)=xyf(x)dx=yf(x)dxxf(x)dx=F(y)F(x)
  3. P ( X > x ) = 1 − F ( x ) . \mathbb{P}(X>x)=1-F(x). P(X>x)=1F(x).
    证 : P ( X > x ) = 1 − P ( X ⩽ x ) = 1 − F ( x ) 证:P(X>x)=1-P(X\leqslant x)=1-F(x) P(X>x)=1P(Xx)=1F(x)

2.4.
(a)
当 x < 0 时 F ( x ) = 0 当 0 < x < 1 , F ( x ) = ∫ − ∞ x f ( x ) d x = ∫ − ∞ x 1 4 d x = 1 4 x 当 0 < x ⩽ 3 , F ( x ) = ∫ − ∞ x f ( x ) d x = ∫ 0 1 1 4 d x = 1 4 当 3 < x < 5 , F ( x ) = 1 4 + ∫ 3 x f ( x ) d x = 1 4 + 3 8 x − 9 8 = 3 8 x − 7 8 当 x ⩾ 5 时 F ( x ) = 1 \quad当x<0时 F(x)=0\\\quad当0<x<1,F(x)= \int_{-\infty}^{x}f(x)dx= \int_{-\infty}^{x}\frac{1}{4}dx=\frac{1}{4}x \\\quad当0<x\leqslant 3,F(x)= \int_{-\infty}^{x}f(x)dx= \int_{0}^{1}\frac{1}{4}dx=\frac{1}{4}\\\quad当3<x<5,F(x)= \frac{1}{4}+\int_{3}^{x}f(x)dx= \frac{1}{4}+\frac{3}{8}x-\frac{9}{8}=\frac{3}{8}x-\frac{7}{8}\\\quad 当x \geqslant 5时F(x)=1 x<0F(x)=00<x<1F(x)=xf(x)dx=x41dx=41x0<x3F(x)=xf(x)dx=0141dx=413<x<5F(x)=41+3xf(x)dx=41+83x89=83x87x5F(x)=1
所 以 X 的 C D F 为 : F ( x ) = { 0 x<0 1 4 x 0 ⩽ x < 1 1 4 1 ⩽ x < 3 3 8 x − 7 8 3 ⩽ x < 5 1 5 所以X的CDF为:F(x)= \begin{cases} 0& \text{x<0}\\ \frac{1}{4}x& 0 \leqslant x<1\\ \frac{1}{4}& 1\leqslant x<3 \\ \frac{3}{8}x-\frac{7}{8}& 3\leqslant x< 5\\ 1&5 \end{cases} XCDFF(x)=041x4183x871x<00x<11x<33x<55
(b)
Y 的 分 布 函 数 为 F ( y ) = P ( Y < y ) = P ( 1 X < y ) = 1 − P ( X < 1 y ) \begin{aligned} Y的分布函数为F(y) &=P(Y<y) \\ &= P(\frac{1}{X}<y)\\ &=1-P(X<\frac{1}{y}) \end{aligned} YF(y)=P(Y<y)=P(X1<y)=1P(X<y1)

P ( X < 1 y ) = F ( 1 y ) { 1 1 y < 0 1 − 1 4 y 0 ⩽ 1 y < 1 3 4 1 ⩽ 1 y < 3 − 3 8 y + 15 8 3 ⩽ 1 y < 5 0 1 y ⩾ 5 P(X<\frac{1}{y})=F(\frac{1}{y}) \begin{cases} 1 & \frac{1}{y}<0 \\ 1-\frac{1}{4y} & 0 \leqslant \frac{1}{y} <1 \\ \frac{3}{4} & 1 \leqslant \frac{1}{y} < 3 \\ -\frac{3}{8y}+\frac{15}{8} & 3 \leqslant \frac{1}{y} < 5 \\ 0 & \frac{1}{y} \geqslant 5 \end{cases} P(X<y1)=F(y1)114y1438y3+8150y1<00y1<11y1<33y1<5y15
对 F ( y ) 求 导 得 出 Y 的 概 率 密 度 函 数 : f ( y ) = { 0 y < 1 5 3 8 y 2 1 5 < y < 1 3 0 1 3 < y < 1 1 4 y 2 y > 1 对F(y)求导得出Y的概率密度函数:\\ f(y)= \begin{cases} 0 & y < \frac{1}{5} \\ \frac{3}{8y^{2}} & \frac{1}{5} < y < \frac{1}{3} \\ 0 & \frac{1}{3} < y < 1 \\ \frac{1}{4y^{2}} & y > 1 \end{cases} F(y)Yf(y)=08y2304y21y<5151<y<3131<y<1y>1
2.10. 令X和Y独立,证明g(x)和h(Y)独立.
证 : ∵ X 、 Y 独 立 ∴ F ( X , Y ) = F ( X ) ( Y ) 又 F ( g ( x ) , h ( y ) ) = F ( g ( x ) ) F ( h ( y ) ) ∴ g ( X ) 和 h ( Y ) 独 立 \begin{aligned} 证:&\because X、Y独立 \\ &\therefore F(X,Y)=F(X)(Y) \\ &又 F(g(x),h(y))=F(g(x))F(h(y)) \\ &\therefore g(X)和h(Y) 独立 \end{aligned} XYF(X,Y)=F(X)(Y)F(g(x),h(y))=F(g(x))F(h(y))g(X)h(Y)

2.21

3.2. 证明V(X)=0时,存在常数c使得P(X=c)=1成立。
证 : 已 知 V ( X ) = 0 , 方 差 为 0 即 , x = E ( X ) ≡ c ∴ P ( X = c ) = 1 \begin{aligned} 证:&已知V(X)=0,方差为0 \\ &即,x=E(X)\equiv c \\ &\therefore P(X=c)=1 \end{aligned} V(X)=0,0x=E(X)cP(X=c)=1
3.4.

3.10.
∵ X ∽ N ( 0 , 1 ) x 的 概 率 密 度 函 数 为 f ( x ) = 1 2 π e − x 2 2 E ( Y ) = ∫ − ∞ + ∞ e x f ( x ) d x = ∫ − ∞ + ∞ 1 2 π e 2 x − x 2 2 d x = e 1 2 ∫ − ∞ + ∞ 1 2 π e − ( x − 1 ) 2 2 f ( x ) d x = e 1 2 同 理 : V ( Y ) = E ( Y 2 ) − E 2 ( Y ) = ∫ − ∞ + ∞ e 2 x f ( x ) d x − e = e 2 − e \because X \backsim N(0,1) \\ x的概率密度函数为f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}} \\ \begin{aligned} E(Y) & =\int_{-\infty}^{+\infty}e^{x}f(x)dx \\ & = \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi}}e^{\frac{2x-x^{2}}{2}}dx \\ & =e^{\frac{1}{2}} \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{(x-1)^{2}}{2}}f(x)dx \\ & = e^{\frac{1}{2}} \\ 同理:V(Y)& = E(Y^{2})-E^{2}(Y) \\ & = \int_{-\infty}^{+\infty}e^{2x}f(x)dx-e \\ & = e^{2} - e \end{aligned} XN(0,1)xf(x)=2π 1e2x2E(Y)V(Y)=+exf(x)dx=+2π 1e22xx2dx=e21+2π 1e2(x1)2f(x)dx=e21=E(Y2)E2(Y)=+e2xf(x)dxe=e2e
3.18. 证明:若 E(X|Y=y)=c 则 X与Y不相关
证 : ∵ E ( X ∣ Y = y ) = c 则 E ( X ∣ Y = y ) = ∫ − ∞ + ∞ x f X , Y ( x , y ) f Y ( y ) d x = 1 f Y ( y ) ∫ − ∞ + ∞ x f X , Y ( x , y ) d x = c 即 ∫ − ∞ + ∞ x f X , Y ( x , y ) d x = c f Y ( y ) 两 边 同 时 积 分 : ∫ − ∞ + ∞ ∫ − ∞ + ∞ x y f X , Y ( x , y ) d x d y = c ∫ − ∞ + ∞ y f Y ( y ) d y 即 E ( X Y ) = c E ( Y ) 又 E ( E ( X ∣ Y ) ) = E ( X ) = c 则 E ( X Y ) = E ( X ) E ( Y ) 得 出 X , Y 不 相 关 \begin{aligned} 证:\because E(X|Y=y)&=c \\ 则 E(X|Y=y)& =\int_{-\infty}^{+\infty}\frac{xf_{X,Y}(x,y)}{f_Y(y)}dx \\ &= \frac{1}{f_Y(y)}\int_{-\infty}^{+\infty}{xf_{X,Y}(x,y)}dx \\ & =c \\ 即 \int_{-\infty}^{+\infty}{xf_{X,Y}(x,y)}dx&=c f_Y(y) \\ 两边同时积分:\\ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}{xyf_{X,Y}(x,y)}dxdy&=c\int_{-\infty}^{+\infty}y f_Y(y)dy \\ 即 E(XY)&=cE(Y) \\ 又 E(E(X|Y))&= E(X)=c \\ 则 E(XY)&=E(X)E(Y) \\ 得出 X,Y&不相关 \end{aligned} E(XY=y)E(XY=y)+xfX,Y(x,y)dx++xyfX,Y(x,y)dxdyE(XY)E(E(XY))E(XY)X,Y=c=+fY(y)xfX,Y(x,y)dx=fY(y)1+xfX,Y(x,y)dx=c=cfY(y)=c+yfY(y)dy=cE(Y)=E(X)=c=E(X)E(Y)

矩阵代码
a 11 a 12 a 13 a 21 a 22 a 23 \begin{array}{ccc} %该矩阵一共3列,每一列都居中放置 a11 & a12 & a13\\ %第一行元素 a21 & a22 & a23\\ %第二行元素 \end{array} a11a21a12a22a13a23
0 1 1 0 ( 0 − i i 0 ) [ 0 − 1 1 0 ] { 1 0 0 − 1 } ∣ a b c d ∣ ∥ i 0 0 − i ∥ \begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \quad \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad \begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix} \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix} \quad \begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix} 0110(0ii0)[0110]{1001}acbdi00i
参考链接:
Cmd Markdown 公式指导手册
Markdown下LaTeX公式、编号、对齐
一份其实很短的 LaTeX入门文档
[CSDN_Markdown]使用LaTeX基本数学公式
https://blog.csdn.net/weixin_39278265/article/details/88406290
http://www.mohu.org/info/symbols/symbols.htm
https://blog.csdn.net/zgj926503/article/details/52757631
http://latex.91maths.com/eg/dxgailvlun.html
https://blog.csdn.net/ying_xu/article/details/51240291
https://blog.csdn.net/shmilychan/article/details/51482945
https://www.zybuluo.com/fyywy520/note/82980
https://www.cnblogs.com/csu-lmw/p/10434854.html
https://www.jianshu.com/p/25f0139637b7
https://blog.csdn.net/hhy_csdn/article/details/83722106
http://blog.sciencenet.cn/blog-812827-1129613.html

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值