用LaTex代码写数学公式

一、初等数学

1.上下标 ^ _

^表上标,_表下标。若字符多余一个,用{ }括起来

x y z = ( 1 + e x ) − 2 x y w x^{y^z}=(1+e^x)^{-2xy^w} xyz=(1+ex)2xyw :$x^{y^z}=(1+e^x)^{-2xy^w}$



2.分子分母 \frac{}{}

1 n \frac{1}{n} n1$\frac{1}{n}$
放大加d:\dfrac{}{}



3.根号 \sqrt、\sqrt[n]

开n次方:\sqrt[n]{内容} 内容 n \sqrt[n]{内容} n内容


$\sqrt{b^2 - 4ac}$ b 2 − 4 a c \sqrt{b^2 - 4ac} b24ac



4.绝对值:\lvert 内容 \rvert

 $\lvert X-Y\rvert$

∣ X − Y ∣ \lvert X-Y\rvert XY

用Latex代码写绝对值主要是为了在CSDN表格中使用绝对值。如果直接用键盘上的 | 符号,会和CSDN的表格构造冲突。



5.累加、累乘

(1)累加 \sum\limits_{}^{}

∑ i = 1 n 1 x 2 \sum\limits_{i=1}^n\dfrac{1}{x^2} i=1nx21:$\sum\limits_{i=1}^n\dfrac{1}{x^2}$


(2)累乘 \prod\limits
$\prod\limits_{i=0}^n$

∏ i = 0 n \prod\limits_{i=0}^n i=0n


 $\prod\limits_{i=0}^n\dfrac{1}{x_i^2}$

∏ i = 0 n 1 x i 2 \prod\limits_{i=0}^n\dfrac{1}{x_i^2} i=0nxi21



6.空格:\quad、\qquad

\quad\qquad
在这里插入图片描述


7.取整

1.向下取整

⌊ ⌋

2.向上取整

⌈ ⌉



二、高等数学

1.极限 \lim\limits

$\lim\limits_{n→∞}$

lim ⁡ n → ∞ \lim\limits_{n→∞} nlim


$\lim\limits_{n\rightarrow+\infty}\dfrac{1}{n(n+1)}$

lim ⁡ n → + ∞ 1 n ( n + 1 ) \lim\limits_{n\rightarrow+\infty}\dfrac{1}{n(n+1)} n+limn(n+1)1


(1)极限换行:\atop
$\lim\limits_{x→x_0\atop y→y_0}$

lim ⁡ x → x 0 y → y 0 \lim\limits_{x→x_0\atop y→y_0} yy0xx0lim



2.积分 \int_下限^上限

(1)一重积分号 \int

1.定积分:

$\int_0^1x^2{\rm d}x$

∫ 0 1 x 2 d x \int_0^1x^2{\rm d}x 01x2dx


2.一重广义积分

$\int_{-}^{+}x^2{\rm d}x$

∫ − ∞ + ∞ x 2 d x \int_{-∞}^{+∞}x^2{\rm d}x +x2dx


3.二重广义积分

$\int_{-}^{+}\int_{-}^{+}f(x,y){\rm d}x{\rm d}y$ 

∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y \int_{-∞}^{+∞}\int_{-∞}^{+∞}f(x,y){\rm d}x{\rm d}y ++f(x,y)dxdy



(2)二重积分号 \iint
$\iint$

∬ \iint

$\iint\limits_D$

∬ D \iint\limits_D D


(3)三重积分号 \iiint
$\iiint$

∭ \iiint


(4)封闭积分 \oint
$\oint$

∮ \oint


$\oiint$

∯ \oiint


(5)积分号变大

\displaystyle



3.存在、任意

存在: ∃ \exist
任意: ∀ \forall



4.向量

(1)一个字母的向量:\vec{}
$\vec{a}$

a ⃗ \vec{a} a


(2)多个字母的向量:\overrightarrow{AB}
$\overrightarrow{AB}$

A B → \overrightarrow{AB} AB


(3)黑体加粗:\boldsymbol{x}

向量更常见的写法是黑体加粗

$\boldsymbol{x}$ 

x \boldsymbol{x} x



5.大括号

$\left\{\begin{aligned}
x & =  φ(t) \\
y & =  ψ(t) 
\end{aligned}\right.$

示例1:
{ x = φ ( t ) y = ψ ( t ) \left\{ \begin{aligned} x & = φ(t) \\ y & = ψ(t) \end{aligned} \right. {xy=φ(t)=ψ(t)


示例2:

$$f(x)=\left\{\begin{aligned}
x & =  \cos(t) \\
y & =  \sin(t) \\
z & =  \frac xy
\end{aligned}\right.$$

f ( x ) = { x = cos ⁡ ( t ) y = sin ⁡ ( t ) z = x y f(x)=\left\{\begin{aligned} x & = \cos(t) \\ y & = \sin(t) \\ z & = \frac xy \end{aligned}\right. f(x)= xyz=cos(t)=sin(t)=yx


示例3:

$$E(X)=\left\{\begin{aligned}
\sum\limits_{k=1}^∞x_kp_k \qquad&\quad ,离散型 \\
\int_0^{+}xf(x)dx &\quad ,连续型 
\end{aligned}\right.$$

E ( X ) = { ∑ k = 1 ∞ x k p k ,离散型 ∫ 0 + ∞ x f ( x ) d x ,连续型 E(X)=\left\{\begin{aligned} \sum\limits_{k=1}^∞x_kp_k \qquad&\quad ,离散型 \\ \int_0^{+∞}xf(x)dx &\quad ,连续型 \end{aligned}\right. E(X)= k=1xkpk0+xf(x)dx,离散型,连续型



6.箭头上写字

(1)单向箭头
$A \xleftarrow{n=0} B \xrightarrow[T]{n>0} C$

A ← n = 0 B → T n > 0 C A \xleftarrow{n=0} B \xrightarrow[T]{n>0} C An=0 Bn>0 TC


(2)双向箭头
$\xleftrightarrow[1]{2}$

↔ 1 2 \xleftrightarrow[1]{2} 2 1


(3)箭头长度可变的双向箭头
$罗尔定理 \underset{特例}{\xrightleftharpoons{推广}} 拉格朗日中值定理\underset{特例}{\xrightleftharpoons{推广}}柯西中值定理$

罗尔定理 ⇌ 推广 特例 拉格朗日中值定理 ⇌ 推广 特例 柯西中值定理 罗尔定理 \underset{特例}{\xrightleftharpoons{推广}} 拉格朗日中值定理\underset{特例}{\xrightleftharpoons{推广}}柯西中值定理 罗尔定理特例推广 拉格朗日中值定理特例推广 柯西中值定理


7.等价箭头:\Leftrightarrow

$\Leftrightarrow$

⇔ \Leftrightarrow


8.推导箭头:\Rightarrow

⇒ \Rightarrow


(1)各种箭头

Latex各种箭头



9.等号上写字 \xlongequal[]{}

 $$\oiint\limits_Σ|y|\ {\rm d}S\xlongequal{轮换对称性}\dfrac{1}{3}\oiint\limits_Σ(|x|+|y|+|z|)\ {\rm d}S$$

∯ Σ ∣ y ∣   d S = 轮换对称性 1 3 ∯ Σ ( ∣ x ∣ + ∣ y ∣ + ∣ z ∣ )   d S \oiint\limits_Σ|y|\ {\rm d}S\xlongequal{轮换对称性}\dfrac{1}{3}\oiint\limits_Σ(|x|+|y|+|z|)\ {\rm d}S Σ y dS轮换对称性 31Σ (x+y+z) dS




三、线性代数

1.行列式

只需要把矩阵的( )、[ ] 换成| |

$\left|\begin{array}{ccc}
		\vec{i} & \vec{j} & \vec{k} \\ 
		\frac{}{∂x} & \frac{}{∂y} & \frac{}{∂z}\\
		P&Q&R 
	\end{array}\right|$

∣ i ⃗ j ⃗ k ⃗ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ \left|\begin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ \frac{∂}{∂x} & \frac{∂}{∂y} & \frac{∂}{∂z}\\ P&Q&R \end{array}\right| i xPj yQk zR



$\left|\begin{array}{cc}
		O & B \\ 
		A & C 
	\end{array}\right|=\left|\begin{array}{cc}
		C & B \\ 
		A & O 
	\end{array}\right|=(-1)^{mn}|A||B|$

∣ O A B O ∣ = ∣ C A B O ∣ = ∣ O A B C ∣ = ( − 1 ) m n ∣ A ∣ ∣ B ∣ \left|\begin{array}{cc} O & A \\ B & O \end{array}\right|=\left|\begin{array}{cc} C & A \\ B & O \end{array}\right|=\left|\begin{array}{cc} O & A \\ B & C \end{array}\right|=(-1)^{mn}|A||B| OBAO = CBAO = OBAC =(1)mnA∣∣B



2.矩阵

$\left(\begin{array}{cc}
		x_1 & x_2 \\ 
		x_3 & x_4 
	\end{array}\right)$

( x 1 x 2 x 3 x 4 ) \left(\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array}\right) (x1x3x2x4)



\left(\begin{array}{cc}
		a₁₁ & a₁₂ & a₁₃  \\ 
		a₂₁ & a₂₂ & a₂₃  \\
		a₃₁ & a₃₂ & a₃₃  \\		
	\end{array}\right)

( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) \left(\begin{array}{cc} a₁₁ & a₁₂ & a₁₃ \\ a₂₁ & a₂₂ & a₂₃ \\ a₃₁ & a₃₂ & a₃₃ \\ \end{array}\right) a11a21a31a12a22a32a13a23a33



\left(\begin{array}{cc}
		λ₁ &      &   \\ 
		    & λ₂  &    \\
		    &      & λ₃\\		
	\end{array}\right)

( λ 1 λ 2 λ 3 ) \left(\begin{array}{cc} λ₁ & & \\ & λ₂ & \\ & & λ₃\\ \end{array}\right) λ1λ2λ3



\left(\begin{array}{cc}
		λ₁ &      &   \\ 
		    & λ₂  &    \\
		    &      & ...\\
		    &&&	λ_n		
	\end{array}\right)

( λ 1 λ 2 . . . λ n ) \left(\begin{array}{cc} λ₁ & & \\ & λ₂ & \\ & & ...\\ &&& λ_n \end{array}\right) λ1λ2...λn


(1)分块矩阵

A = [ B O O C ] A=\left[\begin{array}{cc} B & O \\ O & C \end{array}\right] A=[BOOC]



3.列向量 \binom{}{}

$\binom{n}{m}$    

( n m ) \binom{n}{m} (mn)


$\dbinom{n}{m}$     //同样可以加d放大

( n m ) \dbinom{n}{m} (mn)


$\left(\begin{array}{c}
		x_1 \\ 
		x_2 \\
		x_3 \\
		x_4
	\end{array}\right)$

( x 1 x 2 x 3 x 4 ) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right) x1x2x3x4



4.方程组

$$\begin{cases}
a_1x+b_1y+c_1z=d_1 \\ 
a_2x+b_2y+c_2z=d_2 \\ 
a_3x+b_3y+c_3z=d_3
\end{cases}$$

{ a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 \begin{cases} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{cases} a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3


$$\begin{cases}
S_0=a+b_0 \\ 
S_n=S_{n-1}+a+b_n\\ 
\end{cases}$$

{ S 0 = a + b 0 S n = S n − 1 + a + b n \begin{cases} S_0=a+b_0 \\ S_n=S_{n-1}+a+b_n\\ \end{cases} {S0=a+b0Sn=Sn1+a+bn


5.相似 ~   \sim

$A\sim B$

A ∼ B A\sim B AB



四、概率论

1.逆事件、取非:\overline{}

A B ‾ \overline{AB} AB$\overline{AB}$


$\overline{CF+OF}=1$

C F + O F ‾ = 1 \overline{CF+OF}=1 CF+OF=1



2.包含于 \subset

1.包含于:
A ⊆ B
\subseteq


2.包含:
B ⊇ A
\supseteq


3.真包含于:
A ⊂ B
\subset


4.真包含:
B ⊃ A
\supset

5.子集与真子集
子集就是一个集合中的全部元素是另一个集合中的元素,有可能与另一个集合相等。
真子集就是一个集合中的元素全部是另一个集合中的元素,但不存在相等。



3.排列组合

(1)排列
$A_n^k$

A斜体: A n k A_n^k Ank


${\rm A}_n^k$    

A正体: A n k {\rm A}_n^k Ank


(2)组合
$C_n^k$ 

C斜体: C n k C_n^k Cnk


${\rm C}_n^k$   

C正体: C n k {\rm C}_n^k Cnk


$\complement_n^k$

∁ n k \complement_n^k nk



4.均值:\bar{}

s ˉ \bar{s} sˉ$\bar{s}$


5.估计量、一帽:\hat{}

y ^ \hat{y} y^ :$\hat{y}$


6.波浪线

1.对一个字符上面加波浪线
X ~ \tilde{X} X~

$\tilde{X}$

2.对表达式上面加波浪线
E X ~ \widetilde{EX} EX

$\widetilde{EX}$

7.卡方分布 \chi^2

$\chi^2$

χ 2 \chi^2 χ2



五、Latex

1.公式界定符

CSDN-MarkDown编辑器使用的公式定界符为$$$,单美元符号包围的是行内公式,双美元符号包围的是块公式。
行内公式,只在同一行内,单美刀符号:$公式内容在同一行$
块公式,要另一起行且居中,双美刀符号:$$公式内容另起一行且居中$$

超过一个字符时使用{ }括起来
注意,$内部写的中括号{ }不会显示出来。需要加斜杠 \{ \}



2.转义字符:大括号{ }   { }

$\{$

{ \{ {


3.右斜杠 \backslash


4.调整

1.让字母变大:\frac改为\dfrac
2.积分变正体:\rm
3.累加、累乘上下限不写在后边,强制写在上边:\limits
4.块公式$$ 公式$$之间调整行距:\\[5mm]


原来:每行都用块公式,导致间隔很大

$$e^x=\sum\limits_{n=0}^∞\dfrac{1}{n!}x^n \qquad (-∞<x<+∞)$$
$$\dfrac{1}{1-x}=\sum\limits_{n=0}^∞x^n \qquad (-1<x<1)$$
$$\dfrac{1}{1+x}=\sum\limits_{n=0}^∞(-x)^n=\sum\limits_{n=0}^∞(-1)^nx^n \qquad (-1<x<1)$$

e x = ∑ n = 0 ∞ 1 n ! x n ( − ∞ < x < + ∞ ) e^x=\sum\limits_{n=0}^∞\dfrac{1}{n!}x^n \qquad (-∞<x<+∞) ex=n=0n!1xn(<x<+)
1 1 − x = ∑ n = 0 ∞ x n ( − 1 < x < 1 ) \dfrac{1}{1-x}=\sum\limits_{n=0}^∞x^n \qquad (-1<x<1) 1x1=n=0xn(1<x<1)
1 1 + x = ∑ n = 0 ∞ ( − x ) n = ∑ n = 0 ∞ ( − 1 ) n x n ( − 1 < x < 1 ) \dfrac{1}{1+x}=\sum\limits_{n=0}^∞(-x)^n=\sum\limits_{n=0}^∞(-1)^nx^n \qquad (-1<x<1) 1+x1=n=0(x)n=n=0(1)nxn(1<x<1)



调整后:只用一个块公式,换行用 \\[5mm]

$$e^x=\sum\limits_{n=0}^∞\dfrac{1}{n!}x^n \qquad (-∞<x<+∞) \\ [5mm]
\dfrac{1}{1-x}=\sum\limits_{n=0}^∞x^n \qquad (-1<x<1)\\[5mm]
\dfrac{1}{1+x}=\sum\limits_{n=0}^∞(-x)^n=\sum\limits_{n=0}^∞(-1)^nx^n \qquad (-1<x<1)$$

e x = ∑ n = 0 ∞ 1 n ! x n ( − ∞ < x < + ∞ ) [ 5 m m ] 1 1 − x = ∑ n = 0 ∞ x n ( − 1 < x < 1 ) 1 1 + x = ∑ n = 0 ∞ ( − x ) n = ∑ n = 0 ∞ ( − 1 ) n x n ( − 1 < x < 1 ) e^x=\sum\limits_{n=0}^∞\dfrac{1}{n!}x^n \qquad (-∞<x<+∞) \\ [5mm] \dfrac{1}{1-x}=\sum\limits_{n=0}^∞x^n \qquad (-1<x<1)\\[5mm] \dfrac{1}{1+x}=\sum\limits_{n=0}^∞(-x)^n=\sum\limits_{n=0}^∞(-1)^nx^n \qquad (-1<x<1) ex=n=0n!1xn(<x<+)[5mm]1x1=n=0xn(1<x<1)1+x1=n=0(x)n=n=0(1)nxn(1<x<1)



5.参考来源

https://blog.csdn.net/Anne033/article/details/124328566

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员爱德华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值