这题真的是一道很不错的题,首先我对题意的理解有点问题,我以为的最优策略是,用最优的策略取胜,但是题目的意思是用最优的策略取得最好的得分。
到哪个人行棋,就暴搜哪个人的可选的每一步,然后比较下一个人行棋所得的结果,取最优。
例如当alice行棋时,就让alice下一步棋的得分取bob最优行棋的分数,然后alice有不同的点可以下,就让alice下一步走法的最优解等于alice走完下一步之后,对应的bob走下一步时的最优解中的最大值。
也就相当于是
alice下一步有很多中走法, 取bob走出最优解中最大的得分,即bob想得分最小,但是alice就取bob得分最小中的最大值即可。
代码如下
#include <bits/stdc++.h>
using namespace std;
int mp[5][5];
const int INF=0x3f3f3f3f;
int judge()
{
for (int i=0;i<3;i++) {
if (mp[i][0]!=0&&mp[i][0]==mp[i][1]&&mp[i][1]==mp[i][2]) return mp[i][0];
if (mp[0][i]!=0&&mp[0][i]==mp[1][i]&&mp[1][i]==mp[2][i]) return mp[0][i];
}
if (mp[0][0]!=0&&mp[0][0]==mp[1][1]&&mp[2][2]==mp[1][1]) return mp[0][0];
if (mp[2][0]!=0&&mp[2][0]==mp[1][1]&&mp[1][1]==mp[0][2]) return mp[2][0];
bool flag=true;
for (int i=0;i<3;i++)
for (int j=0;j<3;j++)
if (mp[i][j]==0)
flag=false;
if (flag) return 0;
return -2;
}
int score()
{
int cnt=0;
for (int i=0;i<3;i++) {
for (int j=0;j<3;j++) {
if (mp[i][j]==0) {
cnt++;
}
}
}
return cnt;
}
int dfs(int p)
{
int j=judge();
if (j==0) {
return 0;
}
else if (j==1) {
return score()+1;
}
else if (j==2) {
return -(score()+1);
}
int ans=(p==1)?-INF:INF;
for (int i=0;i<3;i++) {
for (int j=0;j<3;j++) {
if (!mp[i][j]) {
mp[i][j]=p;
if (p==1) {
ans=max(ans,dfs(2));
}
else {
ans=min(ans,dfs(1));
}
mp[i][j]=0;
}
}
}
return ans;
}
int main()
{
// freopen("in.txt","r",stdin);
int T;
scanf("%d",&T);
while (T--) {
for (int i=0;i<3;i++) {
for (int j=0;j<3;j++) {
scanf("%d",&mp[i][j]);
}
}
// printf("%d\n",judge());
printf("%d\n",dfs(1));
}
return 0;
}