这道题用递归写的话还是很好写的,我们设递归函数的名称为Ways(w,k) 。
它的含义就是,w的大小,取k个物品,有多少种方式。
我们可以知道递归的边界条件就是当w的大小为0的时候,我们的方法数只有一种,但是当我们要取0个物品的时候,我们的方法数就为0了,因为Ways(40,0),显然是0。
边界条件知道以后,我们就可以知道对于物品k来说,我们有两种策略,一种是选它,一种是不选,我们把总的方案数加起来就可以了。
所以不选的时候,我们就让k-1,选的时候我们就让k-1,然后w-a[k]。
程序如下:
#include <iostream>
using namespace std;
int a[30],N;
int Ways(int w,int k)
{
if (w==0)
return 1;
if (k<=0)
return 0;
return Ways(w,k-1)+Ways(w-a[k],k-1);
}
int main()
{
cin>>N;
for (int i=1;i<=N;i++) {
cin>>a[i];
}
cout<<Ways(40,N)<<endl;
return 0;
}