Bellman-Ford算法是一个时间复杂度很高,但是它可以用来判断负环
负环就是上面的图,那个环的整体值小于零了,所以就是负环。
我们用Bellman-Ford算法进行更新,打一个表出来:
k a b c s
0
0 1
0 1 -2 2
0 1 -2 -1 2
0 0 -2 -1 1
这时候,我们已经跑完更新的块了,然后我们运行检查的块,当我们检查到B点的时候,发现d[A]+AB<d[B],所以d[B]就一直在减小,所以上面的更新是无效的。
因为我们跑更新的时候最多跑n-1步就可以了,n是顶点数,所以我们再次更新,不可能更新出新的结果来,所以就含有负环,所以直接return。
这题是个板子题,写个Bellman-Ford试试手,其中注释掉的代码块也是可以用的。
#include <iostream>
#include <cstring>
using namespace std;
const int INF = 0x3f3f3f3f;
int n, m, s, e, t;
int d[110];
struct Edge {
int from, to, cost;
}es[10005];
// void Bellman_Ford()
// {
// memset(d, INF, sizeof(d));
// d[1] = 0;
// while (true) {
// bool update=false;
// for (int j = 1; j <= m;j++) {
// Edge e = es[j];
// if (d[e.from]!=INF&&d[e.to]>d[e.from]+e.cost) {
// d[e.to] = d[e.from] + e.cost;
// update = true;
// }
// if (d[e.to]!=INF&&d[e.from]>d[e.to]+e.cost) {
// d[e.from] = d[e.to] + e.cost;
// update = true;
// }
// }
// if (!update)
// break;
// }
// }
void Bellman_Ford()
{
memset(d, INF, sizeof(d));
d[1] = 0;
for (int i = 1; i < n;i++) {
for (int j = 1; j <= m;j++) {
Edge e = es[j];
if (d[e.from]!=INF&&d[e.to]>d[e.from]+e.cost) {
d[e.to] = d[e.from] + e.cost;
}
if (d[e.to]!=INF&&d[e.from]>d[e.to]+e.cost) {
d[e.from] = d[e.to] + e.cost;
}
}
}
}
int main()
{
ios::sync_with_stdio(false);
while (cin>>n>>m&&n+m) {
for (int i = 1; i <= m;i++) {
cin >> es[i].from >> es[i].to >> es[i].cost;
}
Bellman_Ford();
cout << d[n] << endl;
}
}