HDU-2544-最短路(Bellman-Ford)

Bellman-Ford算法是一个时间复杂度很高,但是它可以用来判断负环
在这里插入图片描述
负环就是上面的图,那个环的整体值小于零了,所以就是负环。
我们用Bellman-Ford算法进行更新,打一个表出来:
k a b c s
0
0 1
0 1 -2 2
0 1 -2 -1 2
0 0 -2 -1 1

这时候,我们已经跑完更新的块了,然后我们运行检查的块,当我们检查到B点的时候,发现d[A]+AB<d[B],所以d[B]就一直在减小,所以上面的更新是无效的。
因为我们跑更新的时候最多跑n-1步就可以了,n是顶点数,所以我们再次更新,不可能更新出新的结果来,所以就含有负环,所以直接return。
这题是个板子题,写个Bellman-Ford试试手,其中注释掉的代码块也是可以用的。

#include <iostream>
#include <cstring>
using namespace std;
const int INF = 0x3f3f3f3f;
int n, m, s, e, t;  
int d[110];

struct Edge {
    int from, to, cost;
}es[10005];

// void Bellman_Ford()
// {
//     memset(d, INF, sizeof(d));
//     d[1] = 0;
//     while (true) {
//         bool update=false;
//         for (int j = 1; j <= m;j++) {
//             Edge e = es[j];
//             if (d[e.from]!=INF&&d[e.to]>d[e.from]+e.cost) {
//                 d[e.to] = d[e.from] + e.cost;
//                 update = true;
//             }
//             if (d[e.to]!=INF&&d[e.from]>d[e.to]+e.cost) {
//                 d[e.from] = d[e.to] + e.cost;
//                 update = true;
//             }
//         }
//         if (!update)
//             break;
//     }
// }

void Bellman_Ford()
{
    memset(d, INF, sizeof(d));
    d[1] = 0;
    for (int i = 1; i < n;i++) {
        for (int j = 1; j <= m;j++) {
            Edge e = es[j];
            if (d[e.from]!=INF&&d[e.to]>d[e.from]+e.cost) {
                d[e.to] = d[e.from] + e.cost;
            }
            if (d[e.to]!=INF&&d[e.from]>d[e.to]+e.cost) {
                d[e.from] = d[e.to] + e.cost;
            }
        }
    }
}

int main()
{
    ios::sync_with_stdio(false);
    while (cin>>n>>m&&n+m) {
        for (int i = 1; i <= m;i++) {
            cin >> es[i].from >> es[i].to >> es[i].cost;
        }
        Bellman_Ford();
        cout << d[n] << endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值