小米妙享中心无故出现无法连接情况,多次连接失败(正常使用突然无法使用)问题解决方案

文章描述了在红米K50Ultra手机和小米平板5运行Windows11系统之间遇到的突然无法连接问题,排除了硬件和网络因素,发现是由于手机运行时间过长导致的系统不稳定。解决方案是关闭手机再重新开机,从而恢复正常的连接功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

使用场景:

测试环境:

解决方案:

过程贴图:(设置  状态信息查看)


 

使用场景:

        本方法适用于之前能够正常连接突然无法使用的情况(排除硬件等无法使用情况)

测试环境:

        红米K50 Ultra (最新MIUI14.0.7) +小米平板5 双系统(Windows 11系统)8bf72c7d169e4b9d9c13fd719b5cd174.png
场景分析: 

        电脑平时正常使用,突然无法连接秒享中心,无论如何尝试都是失败显示

        1.包括同一WIFI下(手机+小米平板5(Windows 11系统)

        2.手机平板去WiFi 连接,手机开启热点模式下连接

        3.去Windows 投影(无线显示器影响)---涉及 虚拟WIFI技术

3.去影响因素(关闭投影=关闭虚拟WIFI)--演示

注意:这里声明和手机连接过 此选项(始终关闭)也是能直接投影。

c6a4e2ee3234417db4263090221b5dae.png

 测试结果依旧无法正常使用

解决方案:

        后研究并测试出原因是手机运行时间过长(系统不稳定因素)手机关机(注意不是重启)再开机即可正常使用

过程贴图:(设置  状态信息查看)

dd634e4094594c008c617c3177cc24c8.jpeg

 

 49cd803f8a174fbbb09e4df673260917.jpeg

 27d7b44c4f7a4e97b8c80ac26c269fba.jpeg

 5d97529e2a0b4c06b4dba2aa35c66f3c.png

 

 

线性回归中的梯度下降是一种常用的优化算法,用于找到最小化预测值与真实值之间误差平方和的模型参数。其基本思想是从初始猜测开始,沿着误差函数梯度的反方向逐步调整参数,直到达到局部最优解。 以下是简单的一维线性回归(只有一个权重w和偏置b)的梯度下降推导: 1. **代价函数**:对于单变量线性回归,我们通常使用均方误差作为代价函数 \( J(w, b) = \frac{1}{2m} \sum_{i=1}^{m}(h_\theta(x^{(i)}) - y^{(i)})^2 \),其中 \( h_\theta(x) = w_0 + w_1x \) 是预测值,\( m \) 是样本数量,\( x^{(i)} \) 和 \( y^{(i)} \) 分别是第i个训练样本的特征和目标值。 2. **梯度计算**:梯度是代价函数关于每个参数的导数,表示了如何改变参数才能使得代价增加最少。对于线性回归,梯度对\( w \)和\( b \)的导数分别是 \( \frac{\partial J}{\partial w} = \frac{1}{m} \sum_{i=1}^{m}(h_\theta(x^{(i)}) - y^{(i)})x^{(i)} \) 和 \( \frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^{m}(h_\theta(x^{(i)}) - y^{(i)}) \)。 3. **步长更新**:每一次迭代,我们按照学习率\( \alpha \)乘以当前梯度的负值得到参数的新值:\( w \leftarrow w - \alpha \cdot \frac{\partial J}{\partial w} \) 和 \( b \leftarrow b - \alpha \cdot \frac{\partial J}{\partial b} \)。 4. **循环迭代**:这个过程会一直重复,直到满足停止条件,比如达到预定的最大迭代次数、代价函数变化小于某个阈值或两者都收敛。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Heart_to_Yang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值