题目描述
有 N 堆纸牌,编号分别为 1,2,…,N 。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若干张纸牌,然后移动。
移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 N=4, 4 堆纸牌数分别为:
① 9 ② 8 ③ 17 ④ 6
移动 3 次可达到目的:
从 ③ 取 4 张牌放到 ④ ( 9,8,13,10)-> 从 ③ 取 3 张牌放到 ②( 9,11,10,10 )-> 从 ② 取 1 张牌放到①( 10,10,10,10 )。
输入输出格式
输入格式:
两行
第一行为: N ( N 堆纸牌, 1≤N≤100 )
第二行为:A1,A2,…,An ( N 堆纸牌,每堆纸牌初始数, 1≤Ai≤10000 )
输出格式:
一行:即所有堆均达到相等时的最少移动次数。
输入输出样例
输入样例#1:
4
9 8 17 6
输出样例#1:
3
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
int s,x;
int a[10001];
int main()
{
int n,i,j;
cin>>n;
for(i=1;i<=n;i++)
{
cin>>a[i];
s+=a[i];
}
s/=n;
for(i=1;i<=n;i++)
a[i]-=s;
i=1;
j=n;
while(a[i]==0&&i<n)
i++;
while(a[j]==0&&j>1)
j--;
while(i<j)
{
a[i+1]+=a[i];
a[i]=0;
x++;
i++;
while(a[i]==0&&i<j)
i++;
}
cout<<x<<endl;
return 0;
}