【ISAC】Optimal Multiuser Transmit Beamforming: A Difficult Problem with a Simple Solution Structure

基础的波束赋型的知识

【1】信号处理与通信中的凸优化:从基础到应用

0-符号

符号 分布
N 基站N根天线
K K个单天线用户
s k ∈ C s_k \in \mathbb{C} skC 给第 k k k个用户的信号
h k ∈ C N × 1 \mathrm{h}_k\in\mathbb{C}^{N\times1} hkCN×1 k k k个用户的信道
w 1 , . . . , w K ∈ C N × 1 \mathrm{w}_1,...,\mathrm{w}_K\in\mathbb{C}^{N\times1} w1,...,wKCN×1 在空间上分离出 K K K个波束赋形矢量
r k = h k H ( ∑ i = 1 K w i s i ) + n k r_k=\mathrm{h}_k^H\left(\sum_{i=1}^K\mathrm{w}_is_i\right)+n_k rk=hkH(i=1Kwisi)+nk k k k个用户的接收信号
S I N R k SINR_{k} SINRk k k k个用户的信干噪比

1-问题建立P1

minimize ⁡ w 1 , … , w K ∑ k = 1 K ∥ w k ∥ 2 s u b j e c t   t o S I N R k ≥ γ k . ( P 1 ) \begin{aligned}&\underset{\mathbf{w}_1,\ldots,\mathbf{w}_K}{\operatorname*{minimize}}\quad\sum_{k=1}^K\|\mathbf{w}_k\|^2\\&\mathrm{subject~to}\quad\mathrm{SINR}_k\geq\gamma_k.\quad\mathrm{(P1)}\end{aligned} w1,,wKminimizek=1Kwk2subject toSINRkγk.(P1)

满足SINR阈值约束,最小化发射功率.
目标函数是凸的,约束是非凸的.
转化非凸约束.

SINR表达式如下
S I N R k = ∣ h k H w k ∣ 2 ∑ i ≠ k ∣ h k H w i ∣ 2 + σ 2 = 1 σ 2 ∣ h ⁡ k H w ⁡ k ∣ 2 ∑ i ≠ k 1 σ 2 ∣ h ⁡ k H w ⁡ i ∣ 2 + 1 . \begin{aligned} SINR_{k}& =\frac{\left|\mathrm{h}_k^H\mathrm{w}_k\right|^2}{\sum_{i\neq k}\left|\mathrm{h}_k^H\mathrm{w}_i\right|^2+\sigma^2} &=\frac{\frac1{\sigma^2}|\operatorname{h}_k^H\operatorname{w}_k|^2}{\sum_{i\neq k}\frac1{\sigma^2}|\operatorname{h}_k^H\operatorname{w}_i|^2+1}. \end{aligned} SINRk=i=k hkHwi 2+σ2 hkHwk 2=i=kσ21hkHwi2+1σ21hkHwk2.
分母放到右边,两边同时除以 γ k \gamma_{k} γk
1 γ k σ 2 ∣ h k H w k ∣ 2 ≥ ∑ i ≠ k 1 σ 2 ∣ h k H w i ∣ 2 + 1 ⇔ 1 γ k σ 2 ℜ ( h k H w k ) ≥ ∑ i ≠ k 1 σ 2 ∣ h k H w i ∣ 2 + 1   . \begin{aligned}\frac{1}{\gamma_{k}\sigma^{2}}\mid\mathrm{h}_{k}^{H}\mathrm{w}_{k}\mid^{2}&\geq\sum_{i\neq k}\frac{1}{\sigma^{2}}\mid\mathrm{h}_{k}^{H}\mathrm{w}_{i}\mid^{2}+1\\&\Leftrightarrow\frac1{\sqrt{\gamma_k\sigma^2}}\Re\left(\mathrm{h}_k^H\mathrm{w}_k\right)\\&\geq\sqrt{\sum_{i\neq k}\frac1{\sigma^2}\left|\mathrm{h}_k^H\mathrm{w}_i\right|^2+1}\:.&\end{aligned} γkσ21hkHwk2i=kσ21hkHwi2+1γkσ2 1(hkHwk)i=kσ21 hkHwi 2+1 .
上面两边都是平方的形式, h k H \mathrm{h}_{k}^{H} hkH w k \mathrm{w}_{k} wk的相位影响,经过平方之后就不存在了,那么直接给两边开根号
得到一个二阶锥规划(second-order cone constraint) pp156 1 γ k σ 2 ℜ ( h k H w k ) ≥ ∑ i ≠ k 1 σ 2 ∣ h k H w i ∣ 2 + 1 \frac1{\sqrt{\gamma_k\sigma^2}}\Re\left(\mathrm{h}_k^H\mathrm{w}_k\right)\geq\sqrt{\sum_{i\neq k}\frac1{\sigma^2}\left|\mathrm{h}_k^H\mathrm{w}_i\right|^2+1} γkσ2 1(hkHwk)i=kσ21 hkHwi 2+1
二阶锥约束左侧是一个向量,右边是一个数,仿射函数 A x + b A x + b Ax+b 的值限制在 R n + 1 \mathbb{R}^{n+1} Rn+1 空间中的二阶锥内, 二阶锥约束要求仿射函数位于锥体的内部
在这里插入图片描述
什么是二阶锥 pp31
不等号两边的变量定义在 R n + 1 \mathbb{R}^{n+1} Rn+1
不等号两边形式都是仿射函数
二次函数的形式
在这里插入图片描述
所以为什么是二阶锥呢 1 γ k σ 2 ℜ ( h k H w k ) ≥ ∑ i ≠ k 1 σ 2 ∣ h k H w i ∣ 2 + 1 \frac1{\sqrt{\gamma_k\sigma^2}}\Re\left(\mathrm{h}_k^H\mathrm{w}_k\right)\geq\sqrt{\sum_{i\neq k}\frac1{\sigma^2}\left|\mathrm{h}_k^H\mathrm{w}_i\right|^2+1} γkσ2 1(hkHwk)i=kσ21 hkHwi 2+1
更具体地,我们可以定义一个向量 z = [ ℜ ( h k H w k ) , ∑ i ≠ k ∣ h k H w i ∣ 2 ] \mathbf{z} = \left[\Re(\mathrm{h}_k^H \mathbf{w}_k), \sum_{i \neq k} \left|\mathrm{h}_k^H \mathbf{w}_i\right|^2 \right] z=[(hkHwk),i=k hkHwi 2],使得这个约束可以被表示为一个二次锥约束的形式,即: ∥ [ ℜ ( h k H w k ) ∑ i ≠

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

db_1024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值