DCGAN的全程为Deep Convolutional Generative Adversarial Network,即深度卷积对抗网络。该实验的主要目的是利用DCGAN来生成人脸图像。DCGAN是Alec Radfor等人[1]于2015年提出的一种模型,该模型基于GAN,并加入了卷积网络,以实现对图像的处理。
在generator中,传统CNN中的pooling层用batch normalization层代替,这样做的好处在于能够减少由于层数加深带来的梯度消散的影响
DCGAN人脸图片生成
最新推荐文章于 2024-05-10 15:05:49 发布
本文介绍了一种名为DCGAN(深度卷积对抗网络)的模型,由Alec Radfor等人于2015年提出,旨在生成高质量的人脸图像。DCGAN基于GAN模型并结合卷积网络,特别在Generator中使用batch normalization替代传统的pooling层,有效解决深层网络的梯度消失问题。
摘要由CSDN通过智能技术生成