DCGAN人脸图片生成

本文介绍了一种名为DCGAN(深度卷积对抗网络)的模型,由Alec Radfor等人于2015年提出,旨在生成高质量的人脸图像。DCGAN基于GAN模型并结合卷积网络,特别在Generator中使用batch normalization替代传统的pooling层,有效解决深层网络的梯度消失问题。
摘要由CSDN通过智能技术生成
   DCGAN的全程为Deep Convolutional Generative Adversarial Network,即深度卷积对抗网络。该实验的主要目的是利用DCGAN来生成人脸图像。DCGAN是Alec Radfor等人[1]于2015年提出的一种模型,该模型基于GAN,并加入了卷积网络,以实现对图像的处理。
  在generator中,传统CNN中的pooling层用batch normalization层代替,这样做的好处在于能够减少由于层数加深带来的梯度消散的影响
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值