计算机视觉
文章平均质量分 73
乔卿
寻找灵感而不是寻找答案。
展开
-
使用ChatGPT完成分类、检测、分割等计算机视觉任务(Pytorch)
ChatGPT是一个由OpenAI训练的大型语言模型,其知识涵盖了很多领域。虽然ChatGPT表示它不能用于写代码,但是万一是它太谦虚了呢?下面的文字均为ChatGPT给出的回答。原创 2022-12-07 20:37:25 · 11109 阅读 · 8 评论 -
Python+OpenCV 计算图像场景的深度图(原理与代码实现)
由于时间原因,通过调用OpenCV中与计算立体图像的深度图相关的函数实现,没有自己造轮子。双目立体匹配一直是双目视觉的研究热点,双目相机拍摄同一场景的左、右两幅视点图像,运用立体匹配匹配算法获取视差图,进而获取深度图,这也正是本次实验的内容。从原理上,如果我们有两张相同场景的图像,我们可以通过直观的方式从中获得深度信息,如下图所示。上图包含等效三角形,并有如下方程式:其中disparity是视差,x与x’是与三维场景中的点对应的图像平面中的点与其相机中心之间的距离。原创 2022-09-06 23:39:32 · 5860 阅读 · 0 评论 -
Python cv.StereoSGBM_create方法参数与用法详解
作用:创建StereoSGBM(semi-global block matching)对象。该对象实现了半全局匹配算法。原创 2022-09-06 23:27:59 · 6997 阅读 · 4 评论 -
计算机视觉. 目标检测: Yolo系列网络学习笔记
计算机视觉领域中的yolo网络的学习笔记,给出了视频链接。原创 2022-07-16 19:20:59 · 395 阅读 · 0 评论 -
Python + OpenCV一步一步地实现图像拼接(原理与代码)
由于时间有限,这里仅先实现平面扭曲。由于已经计算出单应矩阵,可以使用该矩阵将第一张图像转换到第二张图像的平面上。对于在同一平面上的两张图像,一个很直观的思路是,迭代两幅图像,发现匹配的区域则覆盖,否则置为0。.........原创 2022-07-18 14:54:25 · 7745 阅读 · 3 评论 -
Python OpenCV 图像匹配(Brute-Force与FLANN)的原理与代码实现
获得两张图像的关键点之后,下一步就是找到它们之间的对应关系,找到那些相匹配的点,从而基于这些点,实现图像拼接。这一方法即暴力搜索法,它选择第一个集合中一个特征的描述符,计算与第二个集合中的所有其他特征描述符之间的距离,返回最接近的一个。该方法返回的结果是DMatch对象的列表。......原创 2022-07-18 14:45:26 · 3043 阅读 · 0 评论 -
Python OpenCV SIFT特征提取的原理与代码实现
如果对图像扩大规模,如缩放,如下图所示,那么原本的角点在变换后的某些窗口中可能就不是角点,因此,HarrisDetectors不具有尺度不变性。例如,在上图中,低σ的高斯核可以为小角点提供高值,而高σ的高斯核则适合于大角点。因此,我们可以在尺度空间中找到局部极大值。...原创 2022-07-18 14:38:51 · 3235 阅读 · 0 评论 -
Python OpenCV 图像矫正的原理与实现
我们假设目标图像是43的,也就是其大小为(800,600),从而我们可以确定目标图像中四个关键点位置为[0,0],[800,0],[0,600],[800,600]。为了保证交点与目标点一一对应,最为高效的解决方案是,我们筛选图像的时候,按照上、左、下、右的顺序即可。在具体实现时,发现对于给定的图像,几乎不可能通过调整阈值的方式,使得Hough检测到的直线刚好是屏幕边框。4条直线在图像平面中的交点为胶片图像的4个顶点。目录hw1下的图像是一些胶片的照片,请将其进行度量矫正。......原创 2022-07-16 12:10:46 · 6042 阅读 · 7 评论 -
Python OpenCV findHomography()计算单应矩阵的原理与代码实现
假设我们使用同一部相机,用不同视角拍了两张照片,那么如何对这两张图片视角变换进行建模,将相邻的两张图片联系起来,就成为了一个问题。原创 2022-07-13 01:36:57 · 6148 阅读 · 0 评论 -
Python OpenCV Hough直线检测算法的原理与实现
给定一个点,我们一般会写成y=ax+b的形式,这是坐标空间的写法;我们也可以写成b=-xa+y的形式,这是参数空间的写法。也就是说,给定一个点,那么经过该点的直线的参数必然满足b=-xa+y这一条件,也就是必然在参数空间中b=-xa+y这条直线上。如果给定两个点,那么这两点确定的唯一的直线的参数,就是参数空间中两条参数直线的交点。...原创 2022-07-11 20:03:22 · 2124 阅读 · 2 评论 -
Python cv.HoughLines()方法参数与用法详解
Python OpenCV中的Hough直线检测函数的参数说明与用法。原创 2022-07-11 20:02:26 · 6217 阅读 · 2 评论 -
Python OpenCV Canny边缘检测算法的原理与实现
总的来说,Canny边缘检测可以分为四个步骤。本文给出了这四个步骤的原理与代码实现。原创 2022-07-11 19:54:32 · 1089 阅读 · 0 评论 -
Python cv.Canny()方法参数与用法详解
OpenCV提供了cv.Canny()方法,该方法将输入的原始图像转换为边缘图像。原创 2022-07-11 19:53:33 · 5487 阅读 · 5 评论 -
Python OpenCV中的drawMatches()关键点匹配绘制方法详解
该方法被用于绘制关键点的匹配情况,我们看到的许多匹配结果都是使用这一方法绘制的。原创 2022-05-08 17:32:03 · 10337 阅读 · 2 评论 -
Python OpenCV中的Stitcher.stitch图像拼接方法介绍(详细)
细致地介绍python opencv中的stitch方法原创 2022-05-07 16:56:03 · 8969 阅读 · 0 评论 -
计算机视觉:图像分割算法综述总结
传统方法1. 基于阈值的分割基于图像的灰度特征来计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值作比较,最后将像素根据比较结果分到合适的类别中。计算简单,效率较高; 只考虑像素点灰度值本身的特征,一般不考虑空间特征,因此对噪声比较敏感,鲁棒性不高。阈值分割方法的最关键就在于阈值的选择。若将智能遗传算法应用在阀值筛选上,选取能最优分割图像的阀值,这可能是基于阀值分割的图像分割法的发展趋势。2. 基于区域的图像分割方法一种是区域生长,从单个像素出发,逐步合并以形成所需要的分割原创 2021-12-23 18:53:12 · 4244 阅读 · 0 评论 -
Python3 OpenCV调用摄像头进行实时人脸识别
写在最前在Python与计算机视觉这个方向上,我只算个初学者,不会用一些复杂语法,所以代码写得比较简单。代码如有问题或有待进一步优化,请各位同学不吝指出。项目使用了官方的Haar分类器haarcascade_frontalface_alt.xml进行人脸识别。如果找不到官方下载链接,可以在文末留下邮箱,我看到之后会发送。项目代码import cv2import matplotlib.pyplot as pltimport numpy as npimport time# 图像显示def s原创 2020-11-13 18:50:47 · 2595 阅读 · 7 评论