题目
给定一个字符串 s
,找到 s
中最长的回文子串。你可以假设 s
的最大长度为 1000。
思路
1.中心扩散法:
枚举每一个位置(两个位置)作为中心点的情况,向两边扩散,不断更新最大长度的答案。
时间复杂度O(n^2),空间复杂度O(1)。
2.动态规划:
定义状态dp[i][j]为区间[i,j]的s的子串是否为回文。假如dp[i][j]是回文,且s[i-1]==s[j+1],那么dp[i-1][j+1]也是回文。在这个过程中不断更新最大长度的答案,最后输出这个最长的回文子串即可。
时间复杂度O(n^2),空间复杂度O(n^2)。
比较:中心扩散法做了很多重复的判断,动态规划做法以空间换时间,记录下子串是否为回文的状态,虽然级别是一样的,但是实际上时间复杂度比中心扩散法低很多。
3.马拉车算法(Manacher)
Manacher算法是基于中心扩散法,采用以空间换时间的思路,将求最长回文子串的复杂度降到O(n)的巧妙方法。
思路:为了将长度为奇数的回文串和长度为偶数的回文串一起考虑,在原字符串的每个相邻两个字符中间插入一个分隔符,同时在首尾也要添加一个分隔符,分隔符的要求是不在原串中出现。用一个数组Len[i]表示以字符S[i]为中心的最长回文字串的最右字符到S[i]的长度,比如以S[i]为中心的最长回文字串是S[l, r],那么Len[i] = r - i + 1。Len数组有一个性质,那就是Len[i] - 1就是该回文子串在原字符串S中的长度。
Len数组的计算:
设right为以字符S[i]为中心的最长回文字串的最右字符的位置,令pos为字符S[i]的位置i,i从左往右匹配。
存在两种情况:①当i < right时,我们把以pos为对称中心的与i对称的点即 j = 2 * pos - i。如果以j为中心的最长回文串在以pos为中心的最长回文串里,根据对称性得到 Len[i] = Len[j];如果以j为中心的最长回文串不在以pos为中心的最长回文串里,说明超出这个范围了,那么根据对称性得到Len[i] = right - i。综上所述,Len[i] = min(right - i, Len[j])。
②当i>=right时,说明以T[i]为中心的回文串一个都没有进行匹配,所以Len[i]=1,需要从头开始一个个往下匹配。
时间复杂度O(n),空间复杂度O(n)。
代码
// 中心扩散法
class Solution {
public:
string longestPalindrome(string s) {
int n = s.size();
if(n < 2) return s;
int ans = 1, bg = 0;
for(int i = 0; i < n - 1; i++) {
int left = i - 1, right = i + 1;
while(left >= 0 && right < n && s[left] == s[right]) {
if(right - left + 1 > ans) {
ans = right - left + 1;
bg = left;
}
left--;
right++;
}
if(s[i] == s[i + 1]) {
left = i, right = i + 1;
while(left >= 0 && right < n && s[left] == s[right]) {
if(right - left + 1 > ans) {
ans = right - left + 1;
bg = left;
}
left--;
right++;
}
}
}
return s.substr(bg, ans);
}
};
// 动态规划
class Solution {
public:
string longestPalindrome(string s) {
int n = s.size();
if(n < 2) return s;
int dp[n][n];
memset(dp, false, sizeof dp);
int ans = 1, bg = 0;
for(int i = n - 1; i >= 0; i--) {
for(int j = i; j < n; j++) {
if(j - i + 1 == 1) {
dp[i][j] = true;
}
else if(j - i + 1 == 2) {
if(s[i] == s[j]) {
dp[i][j] = true;
if(j - i + 1 > ans) {
ans = j - i + 1;
bg = i;
}
}
}
else {
if(dp[i + 1][j - 1] && s[i] == s[j]) {
dp[i][j] = true;
if(j - i + 1 > ans) {
ans = j - i + 1;
bg = i;
}
}
}
}
}
return s.substr(bg, ans);
}
};