【...】今天我们来判断素数~
目录
【原始】
时间复杂度O(n*sqrt(n))
bool isprime(int n)
{
int i;
for(i=2;i<=sqrt(n);i++)
if(n%i==0)
return false;
return true;
}
【...】有了以上思路,可以简单粗暴地对n进行素数判断。但当n特别大时,这样的算法显然效率太低,于是在这里提供筛法的思想:我们可以构建一个大小为n+5的bool类型数组,并将各元素初始化为true,通过算法将非素数的下标所对应元素值赋为false,最后通过判断对应元素的真假输出是否为素数即可。
【普通筛——埃拉托斯特尼(Eratosthenes)筛法】
时间复杂度O(nloglogn)
bool number[maxn+5];
void isprime()
{
int i,j;
memset(number,true,sizeof(number));
for(i=2;i<=maxn;i++)
{
if(number[i]==true)
{
for(j=2;j*i<=N;j++)
number[i*j]=false;
}
}
}
改进:
bool number[maxn+5];
void isprime()
{
int i,j;
memset(number,true,sizeof(number));
for(i=2;i<=sqrt(N);i++)
{
if(number[i]==true)
{
for(j=i*i;j<=N;j+=i)
number[j]=false;
//二次筛选法:i是素数,则下一个起点是i*i,把后面的所有的i*i+2*n*i筛掉
}
}
}
【...】上面介绍的筛法效率很高,但不足之处也比较明显,就是很多数被重复判断,显然是不必要的。
【线性筛——欧拉Euler筛】
时间复杂度为O(n)
prime[]数组中的素数是递增的,当i能整除prime[j],那么i*prime[j+1]这个合数肯定被prime[j]乘以某个数筛掉。
因为i中含有prime[j],prime[j]比prime[j+1]小,即i=k*prime[j],那么i*prime[j+1]=(k*prime[j])*prime
[j+1]=k’*prime[j],接下去的素数同理。所以不用筛下去了。因此,在满足i%prime[j]==0这个条件之前以及第一次
满足改条件时,prime[j]必定是prime[j]*i的最小因子。
bool number[maxn+5];
void isprime()
{
int prime[maxn+5];
int i,j,c=0;
memset(number,true,sizeof(number));
for(i=2;i<=maxn;i++)
{
if(number[i])
prime[c++]=i;
for(j=0;j<c&&prime[j]*i<=maxn;j++)
{
number[prime[j]*i]=false;
if(i%prime[j]==0) //保证每个合数只会被它的最小质因数筛去,因此每个数只会被标记一次
break;
}
}
}