# 畅通工程续 + Til the Cows Come Home（最短路）

【板子】

https://blog.csdn.net/qq_41117236/article/details/80517605

【一】

# 畅通工程续

TimeLimit:1000MS  MemoryLimit:32768KB

64-bit integer IO format:%I64d

Problem Description

Input

Output

SampleInput

3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2

SampleOutput

2
-1

【题解】

【代码】

#include<bits/stdc++.h>
using namespace std;
const int inf=0x3f3f3f3f;
int mp[205][205];
void floyd(int n)
{
for(int k=0;k<n;k++)
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
mp[i][j]=min(mp[i][j],mp[i][k]+mp[k][j]);
}
int main()
{
int n,m,a,b,x;
while(~scanf("%d%d",&n,&m))
{
memset(mp,inf,sizeof(mp));
while(m--)
{
scanf("%d%d%d",&a,&b,&x);
mp[a][b]=min(x,mp[a][b]);
mp[b][a]=min(x,mp[b][a]);
}
floyd(n);
scanf("%d%d",&a,&b);
if(a==b) printf("0\n");
else if(mp[a][b]<inf)
printf("%d\n",mp[a][b]);
else
printf("-1\n");
}
}

【二】

# Til the Cows Come Home

TimeLimit:1000MS  MemoryLimit:65536K

64-bit integer IO format:%lld

Problem Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

* Line 1: Two integers: T and N

* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

SampleInput

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

SampleOutput

90

【题解】

n最大为1000，O(n^3)显然不行，这里用Dijkstra算法，时间复杂度O(n^2)。

【代码】

#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 1005
using namespace std;
const int inf=0x3f3f3f3f;
int dis[maxn],vis[maxn];
int mp[maxn][maxn];
int n;
void init()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(i==j)
mp[i][j]=0;
else
mp[i][j]=inf;
}
}
int djs(int st,int ed)
{
for(int i=1;i<=n;i++)
{
dis[i]=mp[st][i];
vis[i]=0;
}
vis[st]=1;
for(int i=1;i<n;i++)
{
int minn=inf;
int next=-1;
for(int j=1;j<=n;j++)
{
if(vis[j]==0&&dis[j]<minn)
{
minn=dis[j];
next=j;
}
}
if(next==-1)  continue;
vis[next]=1;
for(int j=1;j<=n;j++)
{
if(vis[j]==0)
dis[j]=min(dis[j],dis[next]+mp[next][j]);
}
}
return dis[ed];
}
int main()
{
int t,a,b,x;
while(~scanf("%d%d",&t,&n))
{
memset(mp,inf,sizeof(mp));
while(t--)
{
scanf("%d%d%d",&a,&b,&x);
mp[a][b]=min(x,mp[a][b]);
mp[b][a]=min(x,mp[b][a]);
}
printf("%d\n",djs(1,n));
}
}