处女座的比赛资格(拓扑排序求最短路)

【题解】

显然这是个有向无环图的单源最短路问题,由于存在负权边,Dijkstra算法显然不适用,特殊 DAG 的性质使得 SPFA 算法无法在规定的时间限内求解出答案,Bellman-Ford算法显然不符合时间复杂度。(求最短路径的四种方法(Dijkstra,Floyd,Bellman-Ford,SPFA算法)

2≤n≤10^5,这显然是一个稀疏图,我们可以根据跑出来的拓扑排序求出最短路。

注意:如果两个人走完全程反而赚钱了那么消费作0处理.

【代码】

#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long int ll;
const int maxn=1e5+5;
const int INF=0x3f3f3f3f;
struct node{
    int next, to;
    ll jffzr,cnz,c;
}f[maxn<<1];
int in[maxn],temp[maxn];
int head[maxn];
ll d[maxn];
int n,m;
ll Topo(int s) //拓扑排序
{
    queue <int> q;
    for(int i=1;i<=n;i++)
    {
        d[i]=INF;
        temp[i]=in[i];
        if(!temp[i]) q.push(i); //找到入度为0的起始点
    }
    d[1]=0;
    while(!q.empty())
    {
        int u=q.front(); q.pop();
        for(int i=head[u];i!=-1;i=f[i].next)
        {
            int v=f[i].to;
            d[v]=min(d[v],d[u]+f[i].c-(s==0?f[i].cnz:f[i].jffzr)); 
            temp[v]--;
            if(temp[v]==0) q.push(v);
        }
    }
    return d[n]>0?d[n]:0; //没有花钱返回0
}
int main()
{
    int T; scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&m);
        mem(head,-1),mem(in,0);
        for(int i=0;i<m;i++)
        {
            int u,v;
            scanf("%d%d%lld%lld%lld",&u,&v,&f[i].c,&f[i].cnz,&f[i].jffzr);
            in[v]++; f[i].to=v;
            f[i].next=head[u];
            head[u]=i;
        }
        ll s1=Topo(0),s2=Topo(1);
        if(s1<s2) printf("cnznb!!!\n%lld\n",s2-s1);
        else if(s1>s2) printf("rip!!!\n%lld\n",s1-s2);
        else puts("oof!!!");
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值