【题解】
显然这是个有向无环图的单源最短路问题,由于存在负权边,Dijkstra算法显然不适用,特殊 DAG 的性质使得 SPFA 算法无法在规定的时间限内求解出答案,Bellman-Ford算法显然不符合时间复杂度。(求最短路径的四种方法(Dijkstra,Floyd,Bellman-Ford,SPFA算法))
2≤n≤10^5,这显然是一个稀疏图,我们可以根据跑出来的拓扑排序求出最短路。
注意:如果两个人走完全程反而赚钱了那么消费作0处理.
【代码】
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long int ll;
const int maxn=1e5+5;
const int INF=0x3f3f3f3f;
struct node{
int next, to;
ll jffzr,cnz,c;
}f[maxn<<1];
int in[maxn],temp[maxn];
int head[maxn];
ll d[maxn];
int n,m;
ll Topo(int s) //拓扑排序
{
queue <int> q;
for(int i=1;i<=n;i++)
{
d[i]=INF;
temp[i]=in[i];
if(!temp[i]) q.push(i); //找到入度为0的起始点
}
d[1]=0;
while(!q.empty())
{
int u=q.front(); q.pop();
for(int i=head[u];i!=-1;i=f[i].next)
{
int v=f[i].to;
d[v]=min(d[v],d[u]+f[i].c-(s==0?f[i].cnz:f[i].jffzr));
temp[v]--;
if(temp[v]==0) q.push(v);
}
}
return d[n]>0?d[n]:0; //没有花钱返回0
}
int main()
{
int T; scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
mem(head,-1),mem(in,0);
for(int i=0;i<m;i++)
{
int u,v;
scanf("%d%d%lld%lld%lld",&u,&v,&f[i].c,&f[i].cnz,&f[i].jffzr);
in[v]++; f[i].to=v;
f[i].next=head[u];
head[u]=i;
}
ll s1=Topo(0),s2=Topo(1);
if(s1<s2) printf("cnznb!!!\n%lld\n",s2-s1);
else if(s1>s2) printf("rip!!!\n%lld\n",s1-s2);
else puts("oof!!!");
}
}