2019浙江省程序设计竞赛 I:Fibonacci in the Pocket(简单思维)

题目要求根据斐波那契数列的性质,判断在给定范围内斐波那契数列前缀和的奇偶性。由于斐波那契数列奇偶性循环节为3,可以通过计算数字和来确定。代码实现中,通过判断奇数减偶数的情况输出结果。
摘要由CSDN通过智能技术生成

【题面】

Fibonacci in the Pocket

【题解】

题意:斐波那契数列,给定a,b,如果  \sum_{i=a}^{b}fi 结果为偶数则输出0,奇数则输出1。数据范围 1\leq a\leq b<10 ^{10000}

思路: 这也太简单了8我靠..俩傻子队友比赛的时候搞半天大数,早知道管管他们了(小声bb)。

根据斐波那契数列的性质,易得数列前缀和奇偶性规律为 1 0 0 1 0 0 1 0 0... 循环节为3,我们都知道3的倍数有个规律就是各位上数字的和也整除3,所以我们可以直接字符串存储取出每一位的数字求和,判断[1,b]-[1,a-1]前缀和之差的奇偶性即可,我们可以把求前缀和之差判断奇偶性转换个思路,奇数-奇数==偶数-偶数==偶数,奇数-偶数==偶数-奇数==奇数,所以只需要判断一奇一偶的情况输出1否则输出0即可。

【代码】

#include <bits/stdc++.h>
using namespace s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值