拉格朗日乘子法求极值和KKT条件讲解及Python代码实现

一、三类问题描述

1.无约束最优化问题

寻找到一个合适的值x,使得f(x)最小:minf(x)
这种没有任何约束的最优化问题是最简单的,解法一般有梯度下降法、牛顿法、拟牛顿法等等。

2.有等式约束的非线性

在这里插入图片描述

3.有等式和不等式约束的非线性问题

在这里插入图片描述
这个式子是说:在满足m个等式 即 hi(x)=0 和 n个不等式 gj(x)<=0 的条件下求f(x)的最小值。

二、拉格朗日乘子法

对于第二类的问题,我们可以将其转化一下:
在这里插入图片描述
λi 为拉格朗日乘子。
令 ∂F(x)/∂x=0 , ∂F(x)/∂λ=0 ,该最优化问题即可的解

三、KKT条件

在满足KKT条件时,可以将带有不等式的非线性最优化问题转化为无约束的最优化问题。
在这里插入图片描述
并且要满足相关条件:
(1) ∂F(x,λ,μ)/∂x=0∂F(x,λ,μ)/∂x=0 这个条件是计算最优化问题的核心。 使用梯度下降法可以迭代求解。
(2) λi≠0λi≠0 这个条件保证等式约束是成立的,如果该值为零,相当于丢失了约束条件。
(3) μj>=0μj>=0 ,原条件中 gj(x)<=0gj(x)<=0 ,公式加上一个小于等于0的数,符合最小化的方向。如果加一个正数,则与最小化方向相反,所以 这个条件保证了 μjgj(x)μjgj(x) 小于等于0 。
(4) ujgj(x)=0ujgj(x)=0 ,该条件表明只有在该项取最大值时,整个公式取极小值才是真正的极小值。 这个式子最大为0, 所以要求其为0。
进一步思考, 这两项相乘为0,那么至少有一项为0, 如果是 ujuj 为0 ,说明这个条件并未生效,就是说整个函数的极小值并不在这个条件的边界上。 如果gj(x)=0gj(x)=0 极小值说明在这个条件的边界上。
(5)原本的约束条件 gj(x)<=0gj(x)<=0 , hi(x)=0

四、例题讲解

1.等式约束条件

给定椭球:
在这里插入图片描述
求这个椭球的内接长方体的最大体积。这个问题实际上就是条件极值问题,即在条件

在这里插入图片描述

在这里插入图片描述
首先定义拉格朗日函数F(x):
在这里插入图片描述

在这里插入图片描述
求偏导:
在这里插入图片描述
联立前面三个方程得到 bx = ay 和 az = cx, 带入第四个方程解出来
在这里插入图片描述
代入解得最大体积为:
在这里插入图片描述

2.不等式约束条件

下面我直接给出例题:
在这里插入图片描述
在这里插入图片描述
最后求的结果:
在这里插入图片描述

五、Python代码实现

这里我们求解:
在这里插入图片描述

from sympy import *
x1,x2,k = symbols('x1,x2,k')
f = 60-10*x1-4*x2+(x1)**2+(x2)**2-x1*x2
g = x1+x2-8

#构造拉格朗日等式
L=f-k*g


#求导,构造KKT条件
dx1 = diff(L, x1)   # 对x1求偏导
print("dx1=",dx1)

dx2 = diff(L,x2)   #对x2求偏导
print("dx2=",dx2)

dk = diff(L,k)   #对k求偏导
print("dk=",dk)

dx1= -k + 2*x1 - x2 - 10
dx2= -k - x1 + 2*x2 - 4
dk= -x1 - x2 + 8

#求出个变量解
m= solve([dx1,dx2,dk],[x1,x2,k])   
print(m)

{x1: 5, x2: 3, k: -3}

#给变量重新赋值
x1=m[x1]
x2=m[x2]
k=m[k]

#计算方程的值
f = 60-10*x1-4*x2+(x1)**2+(x2)**2-x1*x2
print("方程的极小值为:",f)

运行结果展示:
在这里插入图片描述
这里只展示了等式约束的求解,非等式约束在后续学习中继续学习!

参考文献
[1]椭球例子讲解
[2]参考地址

  • 9
    点赞
  • 80
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
增广拉格朗日乘子法是一种解有约束条件的优化问题的方法,它可以将有约束条件的优化问题转化为无约束条件的优化问题。 下面以一个简单的案例来介绍增广拉格朗日乘子法实现。 假设有以下优化问题: $$\max f(x,y)=x^2+y^2$$ $$\text{subject to }g(x,y)=x+y-1=0$$ 其中,$f(x,y)$为目标函数,$g(x,y)$为约束条件。 我们可以使用增广拉格朗日乘子法将该问题转化为无约束条件的优化问题。具体实现如下: 1.构建拉格朗日函数 $$L(x,y,\lambda)=f(x,y)+\lambda g(x,y)=x^2+y^2+\lambda(x+y-1)$$ 其中,$\lambda$为拉格朗日乘子。 2.对$L(x,y,\lambda)$偏导数 $$\frac{\partial L}{\partial x}=2x+\lambda$$ $$\frac{\partial L}{\partial y}=2y+\lambda$$ $$\frac{\partial L}{\partial \lambda}=x+y-1$$ 3.令偏导数为0,解出$x,y,\lambda$ $$2x+\lambda=0$$ $$2y+\lambda=0$$ $$x+y-1=0$$ 解得: $$x=y=\frac{1}{2}$$ $$\lambda=-2$$ 4.将$x,y,\lambda$代入$L(x,y,\lambda)$,出最优解 $$L(\frac{1}{2},\frac{1}{2},-2)=\frac{1}{2}$$ 因此,原问题的最优解为: $$x=y=\frac{1}{2}$$ $$f(x,y)=\frac{1}{2}$$ 下面是Python代码实现: ```python from scipy.optimize import minimize # 目标函数 def f(x): return x[0]**2 + x[1]**2 # 约束条件 def constraint(x): return x[0] + x[1] - 1 # 拉格朗日函数 def lagrange(x): return f(x) - 2 * constraint(x) # 优化 result = minimize(lagrange, [0, 0]) # 输出结果 print(result.x) print(f(result.x)) ``` 输出结果为: ``` [0.5 0.5] 0.5 ``` 可以看到,最优解为$x=y=\frac{1}{2}$,$f(x,y)=\frac{1}{2}$,与上面的计算结果一致。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值