使用Python的笑脸数据集(GENKI4K)训练与笑脸识别

一、人脸图像特征提取的方法

1.HOG特征

方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。
(1)主要思想:

在一副图像中,局部目标的表象和形状(appearance and shape)能够被梯度或边缘的方向密度分布很好地描述。(本质:梯度的统计信息,而梯度主要存在于边缘的地方)。

(2)具体的实现方法是:

首先将图像分成小的连通区域,我们把它叫细胞单元。然后采集细胞单元中各像素点的梯度的或边缘的方向直方图。最后把这些直方图组合起来就可以构成特征描述器。

(3)提高性能:

把这些局部直方图在图像的更大的范围内(我们把它叫区间或block)进行对比度归一化(contrast-normalized),所采用的方法是:先计算各直方图在这个区间(block)中的密度,然后根据这个密度对区间中的各个细胞单元做归一化。通过这个归一化后,能对光照变化和阴影获得更好的效果。

(4)优点:

与其他的特征描述方法相比,HOG有很多优点。首先,由于HOG是在图像的局部方格单元上操作,所以它对图像几何的和光学的形变都能保持很好的不变性,这两种形变只会出现在更大的空间领域上。其次,在粗的空域抽样、精细的方向抽样以及较强的局部光学归一化等条件下,只要行人大体上能够保持直立的姿势,可以容许行人有一些细微的肢体动作,这些细微的动作可以被忽略而不影响检测效果。因此HOG特征是特别适合于做图像中的人体检测的。

HOG特征提取方法就是将一个image(你要检测的目标或者扫描窗口):

1)灰度化(将图像看做一个x,y,z(灰度)的三维图像);

2)采用Gamma校正法对输入图像进行颜色空间的标准化(归一化);目的是调节图像的对比度,降低图像局部的阴影和光照变化所造成的影响,同时可以抑制噪音的干扰;

3)计算图像每个像素的梯度(包括大小和方向);主要是为了捕获轮廓信息,同时进一步弱化光照的干扰。

4)将图像划分成小cells(例如6*6像素/cell);

5)统计每个cell的梯度直方图(不同梯度的个数),即可形成每个cell的descriptor;

6)将每几个cell组成一个block(例如3*3个cell/block),一个block内所有cell的特征descriptor串联起来便得到该block的HOG特征descriptor。

7)将图像image内的所有block的HOG特征descriptor串联起来就可以得到该image(你要检测的目标)的HOG特征descriptor了。这个就是最终的可供分类使用的特征向量了。
在这里插入图片描述

2.Dlib

Dlib是一个包含机器学习算法的C++开源工具包。Dlib可以帮助您创建很多复杂的机器学习方面的软件来帮助解决实际问题。目前Dlib已经被广泛的用在行业和学术领域,包括机器人,嵌入式设备,移动电话和大型高性能计算环境。
Dlib的主要特点:

  1. 文档齐全
    不像很多其他的开源库一样,Dlib为每一个类和函数提供了完整的文档说明。同时,还提供了debug模式;打开debug模式后,用户可以调试代码,查看变量和对象的值,快速定位错误点。另外,Dlib还提供了大量的实例。

  2. 高质量的可移植代码
    Dlib不依赖第三方库,无须安装和配置,这部分可参照(官网左侧树形目录的how to compile的介绍)。Dlib可用在window、Mac OS、Linux系统上。

  3. 提供大量的机器学习 / 图像处理算法

深度学习
基于SVM的分类和递归算法
针对大规模分类和递归的降维方法
相关向量机(relevance vector machine);是与支持向量机相同的函数形式稀疏概率模型,对未知函数进行预测或分类。其训练是在贝叶斯框架下进行的,与SVM相比,不需要估计正则化参数,其核函数也不需要满足Mercer条件,需要更少的相关向量,训练时间长,测试时间短。
聚类: linear or kernel k-means, Chinese Whispers, and Newman clustering. Radial Basis Function Networks
多层感知机

3.卷积神经网络

卷积神经网络(Convolutional Neural Networks)是一种深度学习模型或类似于人工神经网络的多层感知器,常用来分析视觉图像。卷积神经网络的创始人是着名的计算机科学家Yann LeCun,目前在Facebook工作,他是第一个通过卷积神经网络在MNIST数据集上解决手写数字问题的人。

卷积神经网络CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。由于CNN的特征检测层通过训练数据进行学习,所以在使用CNN时,避免了显式的特征抽取,而隐式地从训练数据中进行学习;再者由于同一特征映射面上的神经元权值相同,所以网络可以并行学习,这也是卷积网络相对于神经元彼此相连网络的一大优势。卷积神经网络以其局部权值共享的特殊结构在语音识别和图像处理方面有着独特的优越性,其布局更接近于实际的生物神经网络,权值共享降低了网络的复杂性,特别是多维输入向量的图像可以直接输入网络这一特点避免了特征提取和分类过程中数据重建的复杂度。

卷积神经网络中,第一步一般用卷积核去提取特征,这些初始化的卷积核会在反向传播的过程中,在迭代中被一次又一次的更新,无限地逼近我们的真实解。其实本质没有对图像矩阵求解,而是初始化了一个符合某种分布的特征向量集,然后在反向传播中无限更新这个特征集,让它能无限逼近数学中的那个概念上的特征向量,以致于我们能用特征向量的数学方法对矩阵进行特征提取。

二、笑脸数据集(GENKI4K)训练

1.准备数据集

下载链接
在这里插入图片描述
这个文件夹里面就是我们需要的数据集。

2.导入Keras库,并划分数据集

import keras
keras.__version__

在这里插入图片描述

import os, shutil #复制文件
# 原始目录所在的路径
# 数据集未压缩
original_dataset_dir0 = 'D:\\Workspaces\\Jupyter-notebook\\datasets\\mldata\\smile\\train_folder\\0'
original_dataset_dir1 = 'D:\\Workspaces\\Jupyter-notebook\\datasets\\mldata\\smile\\train_folder\\1'

# 我们将在其中的目录存储较小的数据集
base_dir = 'D:\\Workspaces\\Jupyter-notebook\\datasets\\mldata\\smile_small'
os.mkdir(base_dir)

# # 训练、验证、测试数据集的目录
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)

# 笑训练图片所在目录
train_smile_dir = os.path.join(train_dir, 'smile')
os.mkdir(train_smile_dir)

# 不笑训练图片所在目录
train_unsmile_dir = os.path.join(train_dir, 'unsmile')
os.mkdir(train_unsmile_dir)

# 笑验证图片所在目录
validation_smile_dir = os.path.join(validation_dir, 'smile')
os.mkdir(validation_smile_dir)

# 不笑验证数据集所在目录
validation_unsmile_dir = os.path.join(validation_dir, 'unsmile')
os.mkdir(validation_unsmile_dir)

# 笑测试数据集所在目录
test_smile_dir = os.path.join(test_dir, 'smile')
os.mkdir(test_smile_dir)

# 不笑测试数据集所在目录
test_unsmile_dir = os.path.join(test_dir, 'unsmile')
os.mkdir(test_unsmile_dir)

# 将前1000张笑图像复制到train_smile_dir
fnames = ['smile{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir1, fname)
    dst = os.path.join(train_smile_dir, fname)
    shutil.copyfile(src, dst)

# 将下500张笑图像复制到validation_smile_dir
fnames = ['smile{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir1, fname)
    dst = os.path.join(validation_smile_dir, fname)
    shutil.copyfile(src, dst)
    
# 将下500张笑图像复制到test_smile_dir
fnames = ['smile{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir1, fname)
    dst = os.path.join(test_smile_dir, fname)
    shutil.copyfile(src, dst)
    
# 将前1000张不笑图像复制到train_unsmile_dir
fnames = ['unsmile{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir0, fname)
    dst = os.path.join(train_unsmile_dir, fname)
    shutil.copyfile(src, dst)
    
# 将500张不笑图像复制到validation_unsmile_dir
fnames = ['unsmile{}.jpg'.format(i) for i in range(700, 1200)]
for fname in fnames:
    src = os.path.join(original_dataset_dir0, fname)
    dst = os.path.join(validation_unsmile_dir, fname)
    shutil.copyfile(src, dst)
    
# 将500张不笑图像复制到test_unsmile_dir
fnames = ['unsmile{}.jpg'.format(i) for i in range(700, 1200)]
for fname in fnames:
    src = os.path.join(original_dataset_dir0, fname)
    dst = os.path.join(test_unsmile_dir, fname)
    shutil.copyfile(src, dst)

作为健全性检查,让我们计算一下每个训练分组(训练/验证/测试)中有多少张图片:

print('total training cat images:', len(os.listdir(train_smile_dir)))
print('total training dog images:', len(os.listdir(train_unsmile_dir)))
print('total validation cat images:', len(os.listdir(validation_smile_dir)))
print('total validation dog images:', len(os.listdir(validation_unsmile_dir)))
print('total test cat images:', len(os.listdir(test_smile_dir)))
print('total test dog images:', len(os.listdir(test_unsmile_dir)))

在这里插入图片描述
划分的图片数量与前面代码写的一致。

3.构建网络

from keras import layers
from keras import models

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',
                        input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

看一下特征贴图的尺寸如何随每个连续层变化:

model.summary()

在这里插入图片描述

4.数据预处理

from keras import optimizers

model.compile(loss='binary_crossentropy',
              optimizer=optimizers.RMSprop(lr=1e-4),
              metrics=['acc'])
from keras.preprocessing.image import ImageDataGenerator

# All images will be rescaled by 1./255
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
        # This is the target directory
        train_dir,
        # All images will be resized to 150x150
        target_size=(150, 150),
        batch_size=20,
        # Since we use binary_crossentropy loss, we need binary labels
        class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=20,
        class_mode='binary')

在这里插入图片描述
看一看这些生成器之一的输出:

for data_batch, labels_batch in train_generator:
    print('data batch shape:', data_batch.shape)
    print('labels batch shape:', labels_batch.shape)
    break

在这里插入图片描述

5.训练模型

history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,
      epochs=30,
      validation_data=validation_generator,
      validation_steps=50)

取部分训练轮数:
在这里插入图片描述
保存模型:

model.save('smile_and_unsmile_small_1.h5')

在训练和验证数据上绘制模型的损失和准确性:

import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(len(acc))

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()

在这里插入图片描述

6.使用数据增强

数据增强采用了通过现有的训练样本生成更多训练数据的方法,方法是通过许多随机变换来“增加”样本,以产生看起来可信的图像。目的是模型在训练时不会两次查看完全相同的图像。这让模型能够观察到数据的更多内容,从而具有更好的泛化能力。

在Keras中,这可以通过配置要对ImageDataGenerator实例读取的图像执行的许多随机转换来完成。让我们开始一个例子:

datagen = ImageDataGenerator(
      rotation_range=40,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
      fill_mode='nearest')

看一下我们的增强图像:

# This is module with image preprocessing utilities
from keras.preprocessing import image

fnames = [os.path.join(train_smile_dir, fname) for fname in os.listdir(train_smile_dir)]

# We pick one image to "augment"
img_path = fnames[3]

# Read the image and resize it
img = image.load_img(img_path, target_size=(150, 150))

# Convert it to a Numpy array with shape (150, 150, 3)
x = image.img_to_array(img)

# Reshape it to (1, 150, 150, 3)
x = x.reshape((1,) + x.shape)

# The .flow() command below generates batches of randomly transformed images.
# It will loop indefinitely, so we need to `break` the loop at some point!
i = 0
for batch in datagen.flow(x, batch_size=1):
    plt.figure(i)
    imgplot = plt.imshow(image.array_to_img(batch[0]))
    i += 1
    if i % 4 == 0:
        break

plt.show()

在这里插入图片描述
在这里插入图片描述
在紧密连接的分类器之前为模型添加一个Dropout层:

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',
                        input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dropout(0.5))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',
              optimizer=optimizers.RMSprop(lr=1e-4),
              metrics=['acc'])

使用数据增强和dropout来训练我们的网络:

train_datagen = ImageDataGenerator(
    rescale=1./255,
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,)

# Note that the validation data should not be augmented!
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
        # This is the target directory
        train_dir,
        # All images will be resized to 150x150
        target_size=(150, 150),
        batch_size=32,
        # Since we use binary_crossentropy loss, we need binary labels
        class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=32,
        class_mode='binary')

history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,
      epochs=100,
      validation_data=validation_generator,
      validation_steps=50)

部分训练结果:
在这里插入图片描述
把模型保存下来:

model.save('smile_and_unsmile_small_2.h5')

在训练和验证数据上绘制模型的损失和准确性:

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(len(acc))

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()

在这里插入图片描述

三、使用摄像头读取人脸进行笑脸识别

#检测视频或者摄像头中的人脸
import cv2
from keras.preprocessing import image
from keras.models import load_model
import numpy as np
import dlib
from PIL import Image
model = load_model('D:/Workspaces/Jupyter-notebook/人工智能与机器学习/人工智能大作业/smile_and_unsmile_small_2.h5')
detector = dlib.get_frontal_face_detector()
video=cv2.VideoCapture(0)
font = cv2.FONT_HERSHEY_SIMPLEX
def rec(img):
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    dets=detector(gray,1)
    if dets is not None:
        for face in dets:
            left=face.left()
            top=face.top()
            right=face.right()
            bottom=face.bottom()
            cv2.rectangle(img,(left,top),(right,bottom),(0,255,0),2)
            img1=cv2.resize(img[top:bottom,left:right],dsize=(150,150))
            img1=cv2.cvtColor(img1,cv2.COLOR_BGR2RGB)
            img1 = np.array(img1)/255.
            img_tensor = img1.reshape(-1,150,150,3)
            prediction =model.predict(img_tensor)    
            if prediction[0][0]>0.5:
                result='unsmile'
            else:
                result='smile'
            cv2.putText(img, result, (left,top), font, 2, (0, 255, 0), 2, cv2.LINE_AA)
        cv2.imshow('Video', img)
while video.isOpened():
    res, img_rd = video.read()
    if not res:
        break
    rec(img_rd)
##按q退出
    if cv2.waitKey(5) & 0xFF == ord('q'):
        break
video.release()
cv2.destroyAllWindows()

这里可以使用我们前面训练的两个模型。
测试结果展示:
在这里插入图片描述
在这里插入图片描述

四、基于Dlib的笑脸识别

#!Anaconda/anaconda/python
# coding: utf-8
 
"""
从视屏中识别人脸,并实时标出面部特征点
"""
 
import dlib  # 人脸识别的库dlib
import numpy as np  # 数据处理的库numpy
import cv2  # 图像处理的库OpenCv
 
 
class face_emotion():
    def __init__(self):
        # 使用特征提取器get_frontal_face_detector
        self.detector = dlib.get_frontal_face_detector()
        # dlib的68点模型,使用作者训练好的特征预测器
        self.predictor = dlib.shape_predictor("D:/Workspaces/Jupyter-notebook/datasets/mldata/shape_predictor_68_face_landmarks.dat")
 
        # 建cv2摄像头对象,这里使用电脑自带摄像头,如果接了外部摄像头,则自动切换到外部摄像头
        self.cap = cv2.VideoCapture(0)
        # 设置视频参数,propId设置的视频参数,value设置的参数值
        self.cap.set(3, 480)
        # 截图screenshoot的计数器
        self.cnt = 0
 
    def learning_face(self):
 
        # 眉毛直线拟合数据缓冲
        line_brow_x = []
        line_brow_y = []
 
        # cap.isOpened() 返回true/false 检查初始化是否成功
        while (self.cap.isOpened()):
 
            # cap.read()
            # 返回两个值:
            #    一个布尔值true/false,用来判断读取视频是否成功/是否到视频末尾
            #    图像对象,图像的三维矩阵
            flag, im_rd = self.cap.read()
 
            # 每帧数据延时1ms,延时为0读取的是静态帧
            k = cv2.waitKey(1)
 
            # 取灰度
            img_gray = cv2.cvtColor(im_rd, cv2.COLOR_RGB2GRAY)
 
            # 使用人脸检测器检测每一帧图像中的人脸。并返回人脸数rects
            faces = self.detector(img_gray, 0)
 
            # 待会要显示在屏幕上的字体
            font = cv2.FONT_HERSHEY_SIMPLEX
 
            # 如果检测到人脸
            if (len(faces) != 0):
 
                # 对每个人脸都标出68个特征点
                for i in range(len(faces)):
                    # enumerate方法同时返回数据对象的索引和数据,k为索引,d为faces中的对象
                    for k, d in enumerate(faces):
                        # 用红色矩形框出人脸
                        cv2.rectangle(im_rd, (d.left(), d.top()), (d.right(), d.bottom()), (0, 0, 255))
                        # 计算人脸热别框边长
                        self.face_width = d.right() - d.left()
 
                        # 使用预测器得到68点数据的坐标
                        shape = self.predictor(im_rd, d)
                        # 圆圈显示每个特征点
                        for i in range(68):
                            cv2.circle(im_rd, (shape.part(i).x, shape.part(i).y), 2, (0, 255, 0), -1, 8)
                            # cv2.putText(im_rd, str(i), (shape.part(i).x, shape.part(i).y), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                            #            (255, 255, 255))
 
                        # 分析任意n点的位置关系来作为表情识别的依据
                        mouth_width = (shape.part(54).x - shape.part(48).x) / self.face_width  # 嘴巴咧开程度
                        mouth_higth = (shape.part(66).y - shape.part(62).y) / self.face_width  # 嘴巴张开程度
                        # print("嘴巴宽度与识别框宽度之比:",mouth_width_arv)
                        # print("嘴巴高度与识别框高度之比:",mouth_higth_arv)
 
                        # 通过两个眉毛上的10个特征点,分析挑眉程度和皱眉程度
                        brow_sum = 0  # 高度之和
                        frown_sum = 0  # 两边眉毛距离之和
                        for j in range(17, 21):
                            brow_sum += (shape.part(j).y - d.top()) + (shape.part(j + 5).y - d.top())
                            frown_sum += shape.part(j + 5).x - shape.part(j).x
                            line_brow_x.append(shape.part(j).x)
                            line_brow_y.append(shape.part(j).y)
 
                        # self.brow_k, self.brow_d = self.fit_slr(line_brow_x, line_brow_y)  # 计算眉毛的倾斜程度
                        tempx = np.array(line_brow_x)
                        tempy = np.array(line_brow_y)
                        z1 = np.polyfit(tempx, tempy, 1)  # 拟合成一次直线
                        self.brow_k = -round(z1[0], 3)  # 拟合出曲线的斜率和实际眉毛的倾斜方向是相反的
 
                        brow_hight = (brow_sum / 10) / self.face_width  # 眉毛高度占比
                        brow_width = (frown_sum / 5) / self.face_width  # 眉毛距离占比
                        # print("眉毛高度与识别框高度之比:",round(brow_arv/self.face_width,3))
                        # print("眉毛间距与识别框高度之比:",round(frown_arv/self.face_width,3))
 
                        # 眼睛睁开程度
                        eye_sum = (shape.part(41).y - shape.part(37).y + shape.part(40).y - shape.part(38).y +
                                   shape.part(47).y - shape.part(43).y + shape.part(46).y - shape.part(44).y)
                        eye_hight = (eye_sum / 4) / self.face_width
                        # print("眼睛睁开距离与识别框高度之比:",round(eye_open/self.face_width,3))
 
                        # 分情况讨论
                        # 张嘴,可能是开心或者惊讶
                        if round(mouth_higth >= 0.03):
                            if eye_hight >= 0.056:
                                cv2.putText(im_rd, "amazing", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX,
                                            0.8,
                                            (0, 0, 255), 2, 4)
                            else:
                                cv2.putText(im_rd, "happy", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
                                            (0, 0, 255), 2, 4)
 
                        # 没有张嘴,可能是正常和生气
                        else:
                            if self.brow_k <= -0.3:
                                cv2.putText(im_rd, "angry", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
                                            (0, 0, 255), 2, 4)
                            else:
                                cv2.putText(im_rd, "nature", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
                                            (0, 0, 255), 2, 4)
 
                # 标出人脸数
                cv2.putText(im_rd, "Faces: " + str(len(faces)), (20, 50), font, 1, (0, 0, 255), 1, cv2.LINE_AA)
            else:
                # 没有检测到人脸
                cv2.putText(im_rd, "No Face", (20, 50), font, 1, (0, 0, 255), 1, cv2.LINE_AA)
 
            # 添加说明
            im_rd = cv2.putText(im_rd, "S: screenshot", (20, 400), font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
            im_rd = cv2.putText(im_rd, "Q: quit", (20, 450), font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
 
            # 按下s键截图保存
            if (k == ord('s')):
                self.cnt += 1
                cv2.imwrite("screenshoot" + str(self.cnt) + ".jpg", im_rd)
 
            # 按下q键退出
            if (k == ord('q')):
                break
 
            # 窗口显示
            cv2.imshow("camera", im_rd)
 
        # 释放摄像头
        self.cap.release()
 
        # 删除建立的窗口
        cv2.destroyAllWindows()
 
 
if __name__ == "__main__":
    my_face = face_emotion()
    my_face.learning_face()

测试展示:
在这里插入图片描述
在这里插入图片描述
建议使用GPU跑数据集,CPU实在是太慢

  • 7
    点赞
  • 92
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值