【线性代数笔记】About eigenvectors and eigenvalues

suppose we trust each matrix as a function, with vector x as input and vector A(x) as output, similar to f(x) in R fields.
If the result of transformation A ( x ) A(x) A(x) is parallel to x x x, then A ( x ) A(x) A(x) is the eigenvector, denoted as A x = λ x Ax=\lambda x Ax=λx. However, for most cases, this property is not true, that is : A x ≠ λ x Ax \neq \lambda x Ax=λx. The scalar λ \lambda λ here could be a real number, zero, or a complex number, so if we have A x = 0 Ax=0 Ax=0, then indeed A x Ax Ax could be called eigenvector.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值