suppose we trust each matrix as a function, with vector x as input and vector A(x) as output, similar to f(x) in R fields.
If the result of transformation
A
(
x
)
A(x)
A(x) is parallel to
x
x
x, then
A
(
x
)
A(x)
A(x) is the eigenvector, denoted as
A
x
=
λ
x
Ax=\lambda x
Ax=λx. However, for most cases, this property is not true, that is :
A
x
≠
λ
x
Ax \neq \lambda x
Ax=λx. The scalar
λ
\lambda
λ here could be a real number, zero, or a complex number, so if we have
A
x
=
0
Ax=0
Ax=0, then indeed
A
x
Ax
Ax could be called eigenvector.
【线性代数笔记】About eigenvectors and eigenvalues
最新推荐文章于 2024-11-12 13:23:23 发布