TrajGAT:轨迹相似度计算模型

轨迹相似度衡量任务

背景&应用:

随着物联网设备和定位技术的发展,会产生许多时空相似度很高的轨迹,例如:

  • 对于单个个体:其轨迹可能会被多个定位系统所采集,比如当你驾驶汽车在高速上行驶,手机或汽车的GPS、路边的监控摄像头,以及经过的收费站等都会记录你的位置信息,生成多条轨迹。

  • 对于多个个体:比如你的朋友和你结伴出行,生成的两条轨迹也是相似度很高的。

本文研究的方向就是设计一种方法来度量两条轨迹之间的相似度,帮助我们发现一些相似度很高的轨迹对。这是一项很有实际意义的工作,比如在案件侦破中,警方通过相似度分析可以将犯人的车辆、手机和人像联系起来,降低破案的难度。在疫情扩散的当下,我们还可以通过分析感染者的轨迹来寻找密切接触者。

内容参考自:https://zhuanlan.zhihu.com/p/452524959

任务:
设计一种算法来衡量两条轨迹之间的相似度,并且这些轨迹数据是有定位误差和零星采样问题。

存在的挑战

  • 定位误差:存在噪声
  • 零星采样:同一个路径 R R R对应多个轨迹 T r Tr Tr
  • 采样率不同:给定轨迹和需要比较的轨迹的长度不一
    在这里插入图片描述

传统方法

  • DTW(动态时间规整,将轨迹长度进行缩放,再计算欧氏距离)
  • LCSS(最长公共子串,将轨迹投影到网格,计算公共网格)
  • EDR(最小编辑距离,与LCSS类似)
  • ERP、APM(提出了一些更复杂的指标,如转移概率等)
  • 在这里插入图片描述

局限:

  • 对采样率变化的轨迹对的处理较为粗糙;
  • 依赖于轨迹对齐,时间复杂度: O ( n 2 l 2 ) \mathcal{O}(n^2l^2) O(n2l2) ,其中 n n n是样本数, l l l是轨迹长度;
  • 局限于一种度量,缺乏通用性。

深度表示学习方法

t2vec

  • 来自论文:Deep Representation Learning for TrajectorySimilarity Computation[ICDE2018]
  • 对原始轨迹 T b T_b Tb添加噪声、下采样为轨迹 T a T_a Ta,希望轨迹 T a T_a Ta能够生成原始轨迹 T b T_b Tb;利用encoder-decoder学习轨迹的表示。在这里插入图片描述
  • 对空间相关性的建模,主要是在嵌入层:
    • 对于每个网格 u u u,根据远近的分布采样邻近网格集合 C ( u ) \mathcal{C}(u) C(u),用word2vec的方式得到 u u u的表示.
    • 在decoder的 t + 1 t+1 t+1步,对 y t y_{t} yt邻近的网格进行加权.
  • 实验是看增广的轨迹能否匹配原轨迹,两个表示向量的相似度计算方法文中没有介绍,应该就是点积。
  • 评价:将深度学习引入轨迹相似度计算,更强调的是学习轨迹的表示,测试集上: O ( l + ∣ v ∣ ) \mathcal{O}(l+|v|) O(l+v).

NeuTraj

  • 来自论文:Computing Trajectory Similarity in Linear Time: A Generic Seed-Guided Neural Metric Learning Approach [ICDE2019]
  • 引入神经度量学习的方法,使得学习到的度量 g ( T i , T j ) g(T_i,T_j) g(Ti,Tj)逼近真实度量 f ( T i , T j ) f(T_i,T_j) f(Ti,Tj)
  • 可以拟合任意的轨迹度量, f ( ⋅ , ⋅ ) f(·,·) f(,)可以是豪斯多夫距离、弗雷歇距离、动态时间规整等任意的轨迹相似度的度量
  • 模型层面:(1)仍然是基于RNN的模型,构建相似轨迹集进行训练;(2)空间信息在门控机制上进行了记忆设计
    在这里插入图片描述
  • 测试集上的复杂度 O ( l ) \mathcal{O}(l) O(l),训练集复杂度是 O ( n 2 l 2 ) \mathcal{O}(n^2l^2) O(n2l2),其中 n n n是训练样本数, l l l是轨迹长度
  • 评价:训练集的构建为方法不再局限于对原始轨迹的增广.

Traj2SimVec

  • 来自论文:Trajectory Similarity Learning with Auxiliary Supervision and Optimal Matching [IJCAI2020]
  • 和NeuTraj一样,神经度量学习,使得学习到的度量 G ( X , Y ) G(X,Y) G(X,Y)逼近真实度量 S ( X , Y ) S(X,Y) S(X,Y).
  • 文章指出,尽管测试集上的轨迹相似度计算已经降低到线性时间,但是训练集的时间开销仍然是平方阶的,因为需要计算每个样本对之间的相似度。
  • 对轨迹的处理:
    • 引入了一篇轨迹简化(Trajectory Simplication)的工作,对轨迹点的重要性进行计算,对轨迹进行了划分和再采样后,引入了KD树(用于空间划分的特殊二叉树)进行存储。
    • 建树对轨迹点进行表示,降低了计算成本:建树复杂度为 O ( n l o g n ) \mathcal{O}(nlog n) O(nlogn),查询为 O ( l o g n ) \mathcal{O}(log n) O(logn).
    • 基于再采样后的轨迹,设计了对比子轨迹(sub-trajectory)的loss,通过局部的loss加权得到单个样本的loss.
    • 进一步考虑长短不一的轨迹的局部相似性的问题,作者还设计了一种轨迹匹配点的triplet loss,进一步拓展了轨迹相似度的定义.
  • 模型层面:仍然是RNN-based model.
  • 评价:更关注训练阶段的计算开销;拓展了“相似”的定义。

TrajGAT

对之前工作的总结

经典的轨迹相似度指标:计算复杂度平方阶,且局限于单一的度量

基于深度表示学习的模型:

Motivation1: 长序列的处理

(1) 均为RNN-based,难在长序列上表现衰减,难以捕获长序列依赖

存在长序列依赖问题是怎样影响轨迹的相似度计算呢?

  • 论文中给出的理由是:轨迹相似度的计算基于轨迹的对齐,如下图所示。当一个长的轨迹和短的轨迹进行对齐时,无法很好地捕获长的轨迹的信息。
    在这里插入图片描述

  • 在训练集构建的阶段,是用的传统算法来计算的ground truth;先前工作中中涉及轨迹对齐的应该说只有计算轨迹匹配loss的模块。个人认为还是最终学出的表示不够好的原因。

  • 但是事实上,根据作者的实验,在西安数据集上,确实长序列的轨迹的命中率Recall@10\Recall@50和Recall10@50要小;效果更弱一些。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZEWTSqQ4-1666143031666)(https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/9b9aece0547649e9a4fe0374b5c13792~tplv-k3u1fbpfcp-watermark.image?)]
=> 最终目的是让长的轨迹得到比较好的表示。

Motivation2: 网格化的合理性

(2)作者认为,轨迹由空间的网格序列表示,让远距离的record无法相互作用(即:同一个轨迹中,间隔远的点也是具有相似性的)

(3) 此外,作者还认为,由于轨迹在空间中是不均匀分布的,一些网格的数据多,一些网格的数据少,这种空间的异质性会导致一些网格的token在网络训练过程中没有得到足够的数据去优化,因此在长序列的轨迹中,会恶化表示的效果。

=> 希望能充分利用远距离和小样本的网格信息。

Motivation3:长序列表示的挑战

  • Transformer:GPU显存占用较高
  • 长序列表示模型:Bp-transformer、Informer,没有建模空间信息

=> 希望能尽可能节省训练的显存占用。

本文的方案

引入了PR-四叉树可以较好地

  1. 保证各网格训练的均衡
  2. 基于四叉树的构图可以提供层次信息
  3. 相比于要计算每一个网格对的attention,在图上基于GAT的模型,只需要计算邻居的attention,限制了显存的占用。

问题定义

定义:

  • 轨迹库 T \mathcal{T} T包含 N N N条轨迹;
  • 我们强调轨迹都分布在区域 A \mathcal{A} A上;
  • 每条轨迹: T = [ X 1 , . . . , X t , . . . ] ∈ T T=[X_1,...,X_t,...]\in\mathcal{T} T=[X1,...,Xt,...]T,其中 X t = ( l o n t , l a t t ) X_t=(lon_t,lat_t) Xt=(lont,latt)是第t个到达点;
  • f ( T i , T j ) f(T_i,T_j) f(Ti,Tj)是对于轨迹 T i T_i Ti T j T_j Tj相似度的一个度量,可以是DTW,Hausdorff,Frechet距离等…
  • 任务是学习一个函数 g ( ⋅ , ⋅ ) g(·,·) g(,)来估计轨迹的相似度,目标是最小化 ∣ f ( T i , T j ) − g ( T i , T j ) ∣ |f(T_i,T_j)-g(T_i,T_j)| f(Ti,Tj)g(Ti,Tj).

模型概述

  • 首先是对区域 A \mathcal{A} A做了一个层次划分,划分树是 H \mathcal{H} H。模型对 H \mathcal{H} H下的每一个层次的网格做了表示的预训练,希望能够获取不同层次的信息。
  • 基于树 H \mathcal{H} H,作者构造了一个图 T g T^g Tg. 用GAT获得 T g T^g Tg的表示。根据轨迹的序列信息和层次信息生成轨迹的嵌入。
  • 最后,设计ranking loss去学习轨迹的相似度度量。

层次划分

Traj使用Point Region Quadtree(点-区域四叉树)来表征区域的层次划分。

  • 通过对区域进行不断的划分,四叉树的分支,最终保证每个区域包含 δ \delta δ个节点, δ \delta δ是一个经验性的参数。
  • 忽略叶子节点,四叉树构成了对原区域 A \mathcal{A} A的一个划分,记作 H \mathcal{H} H
  • 随着区域 A \mathcal{A} A的增加,作者试图论证: H \mathcal{H} H倾向于稳定(实验见附录A.3,但pdf中没有给出附录)。
  • Traj模型基于这个划分进行设计。

网格的嵌入

  • 将树 H \mathcal{H} H看做一个图。
  • 用Node2vec获得图中各个节点的表示。
  • 最终得到的嵌入记作: M H ∈ d h × N h \bold{M}_\mathcal{H} \in d_h \times N_h MHdh×Nh,得到的各个节点的表示后续将用于计算轨迹的表示

轨迹的编码

构图

对于轨迹 T T T,我们构造了一个新的图 T g = ( N , E ) T^g = (\bold{N},\bold{E}) Tg=(N,E)

N \bold{N} N包括两部分:由轨迹构成的 N r \bold{N}_r Nr和轨迹的层次信息构成的 N h \bold{N}_h Nh

  • 首先找到其包含的轨迹点(对应的网格对应的节点)的嵌入: N r = { n 1 , . . . , n L } \bold{N}_r = \{\bold{n}_1,...,\bold{n}_L\} Nr={n1,...,nL}.
  • 递归地查找PR-四叉树 H \mathcal{H} H中叶子节点 i i i的父节点,即:包含该节点的所有大小的网格,直到网格大小(即节点的层次)到设定的阈值 η \eta η.
  • η \eta η是一个超参数,查找出的节点集合根据层级 i i i分别记作: N r 1 , N r 2 , . . . , N r η \bold{N}_r^1,\bold{N}_r^2,...,\bold{N}_r^\eta Nr1,Nr2,...,Nrη
  • 所有轨迹点的上 η \eta η层构成的节点的嵌入集合记作: N h \bold{N}_h Nh,即:$\bold{N}_h = {\bold{N}_h^1 ,… ,\bold{N}_h^\eta} $

E \bold{E} E包括两部分:(1)原有四叉树中的边;(2)对同层的非叶子节点增加的全连接边,即:每一个 N h i N_h^i Nhi都是全连接的完全子图。

节点的表示

新的图 T g = ( N , E ) T^g = (\bold{N},\bold{E}) Tg=(N,E)是同质的,即:每个节点的表示方式是一致的,都包括三部分: f i = c o n c a t ( f l , f r , f h ) ∈ R 3 d f \bold{f}_i = concat(\bold{f}^l,\bold{f}^r,\bold{f}^h) \in \mathbb{R}^{3d_f} fi=concat(fl,fr,fh)R3df

  • 地点特征: f i l = M L P ( x i , y i ) \bold{f}_i^l=MLP(x_i,y_i) fil=MLP(xi,yi) ( x i , y i ) (x_i,y_i) (xi,yi)是归一化后的节点坐标或区域中心坐标。
  • 区域特征: f i r = M L P ( w i , h i ) \bold{f}_i^r=MLP(w_i,h_i) fir=MLP(wi,hi) ( w i , h i ) (w_i,h_i) (wi,hi)是区域的长和宽
  • 层次特征: f i h = E m b e d d i n g ( M H , n i ) \bold{f}_i^h=Embedding(\bold{M}_\mathcal{H},\bold{n}_i) fih=Embedding(MH,ni) //查询节点i的信息

序列编码

作者通过层次遍历生成树的序列信息,形成节点的列表 L L L
在这里插入图片描述

L L L进行位置编码,得到 λ i s \lambda^s_i λis
在这里插入图片描述

作者希望通过计算图的Laplacian矩阵对应的低频特征向量+节点对应的特征向量,表示节点的距离信息:
在这里插入图片描述

最终,得到节点的表示向量 i i \bold{i}_i ii
在这里插入图片描述

GAT

基于图去计算注意力,只需要利用领近节点的表示,避免了序列Transformer中计算每一组向量的注意力带来的过大开销:
在这里插入图片描述

经过 P P P层的聚合,得到每个节点的最终表示: [ h 1 P , . . . , h M P ] [\bold{h}_1^P,...,\bold{h}_M^P] [h1P,...,hMP]

轨迹的最终表示:

在这里插入图片描述

实验

作者选取了两个数据集:Didi Xian和Porto,根据轨迹的长短, 分成了两个子数据集:Mix和Long.
在这里插入图片描述

  • 对于长的轨迹,超过了所有的baseline;作者认为单纯对长的轨迹的处理更为困难。因此模型的设计是有作用的。

轨迹相似度的计算可以服务于聚类任务,作者使用不同的相似度方法进行聚类,并比较了四种聚类指标下的聚类指数。可以看到TrajGAT远远领先于其它的方法。

在内存占用复杂度上,TrajGAT也有一定的优越性。

作者进一步做了消融实验,证明了网格划分、GAT和轨迹表示模块的有效性。

小结

  1. 作者提出的空间划分方式,将equal-size的网格转换为了层次结构,并通过同一级节点的连接,构造出了一个空间划分的图,具有一定的新意。
  2. 在此基础上,作者使用的图注意力机制捕获长序依赖,在实验上取得了良好的效果。

【拓展阅读】

关于通过二叉树的方式做轨迹的划分的文章:
POI2Vec: Geographical Latent Representation for Predicting Future Visitors

考虑了轨迹的时间维度:
Towards robust trajectory similarity computation: Representation-based spatio-temporal similarity quantification

  • 5
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值