ggstatsplot绘图|统计+可视化,学术科研神器

 

本文首发于“生信补给站”公众号,https://mp.weixin.qq.com/s/zdSit97SOEpbnR18ARzixw

更多关于R语言,ggplot2绘图,生信分析的内容,敬请关注小号。

 

ggstatsplotggplot2包的扩展包,可以同时输出美观的图片和统计分析结果,对于经常做统计分析或者生信人来说非常有用。

一 准备数据

比奇小说网 m.biqi.org

gapminder 数据集包含1952到2007年间(5年间隔)的142个国家的life expectancy, GDP per capita, 和 population信息

#载入绘图R包
library(ggstatsplot)
#载入gapminder 数据集

library(gapminder)
head(gapminder)

ggstatsplot-R包含有很多绘图函数(文末会给出),本文仅展示ggbetweenstats函数使用方法。

 

二 ggbetweenstats 绘图

1 基本绘图展示
显示2007年每个continent的预期寿命分布情况,并统计一下不同大陆之间平均预期寿命的是否有差异?差异是否显著?
#设置种子方便复现
set.seed(123)
# Oceania数据太少,去掉后分析
ggstatsplot::ggbetweenstats(
 data = dplyr::filter(
   .data = gapminder::gapminder,
   year == 2007, continent != "Oceania"
),
 x = continent,
 y = lifeExp,
 nboot = 10,
 messages = FALSE
)

可以看到图中展示出了2007年每个continent的预期寿命分布的箱线图,点图和小提琴图,均值,样本数;并且图形最上方给出了模型的一些统计量信息(整体)。

统计信息意义如下图所示:

注:该函数根据分组变量中的个数自动决定是选择独立样本t检验(2组)还是单因素方差分析(3组或更多组)

 

2 添加统计值

上方给出了整体的检验P值,下面两两之间比较,并添加检验统计量

set.seed(123)
ggstatsplot::ggbetweenstats(
 data = dplyr::filter(
   .data = gapminder::gapminder,year == 2007, continent != "Oceania"),
 x = continent,y = lifeExp,
 nboot = 10,
 messages = FALSE,
 effsize.type = "unbiased", # type of effect size (unbiased = omega)
 partial = FALSE, # partial omega or omega?
 pairwise.comparisons = TRUE, # display results from pairwise comparisons
 pairwise.display = "significant", # display only significant pairwise comparisons
 pairwise.annotation = "p.value", # annotate the pairwise comparisons using p-values
 p.adjust.method = "fdr", # adjust p-values for multiple tests using this method
)

3 图形美化

#添加标题和说明,x轴和y轴标签,标记,离群值,更改主题以及调色板。

set.seed(123)
# plot
gapminder %>% # dataframe to use
 ggstatsplot::ggbetweenstats(
   data = dplyr::filter(.data = ., year == 2007, continent != "Oceania"),
   x = continent, # grouping/independent variable
   y = lifeExp, # dependent variables
   xlab = "Continent", # label for the x-axis
   ylab = "Life expectancy", # label for the y-axis
   plot.type = "boxviolin", # type of plot ,"box", "violin", or "boxviolin"
   type = "parametric", # type of statistical test , p (parametric), np ( nonparametric), r(robust), bf (Bayes Factor).
   effsize.type = "biased", # type of effect size
   nboot = 10, # number of bootstrap samples used
   bf.message = TRUE, # display bayes factor in favor of null hypothesis
   outlier.tagging = TRUE, # whether outliers should be flagged
   outlier.coef = 1.5, # coefficient for Tukey's rule
   outlier.label = country, # label to attach to outlier values
   outlier.label.color = "red", # outlier point label color
   mean.plotting = TRUE, # whether the mean is to be displayed
   mean.color = "darkblue", # color for mean
   messages = FALSE, # turn off messages
   ggtheme = ggplot2::theme_gray(), # a different theme
   package = "yarrr", # package from which color palette is to be taken
   palette = "info2", # choosing a different color palette
   title = "Comparison of life expectancy across continents (Year: 2007)",
   caption = "Source: Gapminder Foundation"
) + # modifying the plot further
 ggplot2::scale_y_continuous(
   limits = c(35, 85),
   breaks = seq(from = 35, to = 85, by = 5)
)

三 其他绘图函数

FunctionPlotDescription
ggbetweenstatsviolin plotsfor comparisons between groups/conditions
ggwithinstatsviolin plotsfor comparisons within groups/conditions
gghistostatshistogramsfor distribution about numeric variable
ggdotplotstatsdot plots/chartsfor distribution about labeled numeric variable
ggpiestatspie chartsfor categorical data
ggbarstatsbar chartsfor categorical data
ggscatterstatsscatterplotsfor correlations between two variables
ggcorrmatcorrelation matricesfor correlations between multiple variables
ggcoefstatsdot-and-whisker plotsfor regression models

 

四 更多请参照官方文档

https://indrajeetpatil.github.io/ggstatsplot/index.html

 

◆ ◆ ◆ ◆ ◆

R|生存分析(1):生存分析介绍以及绘制KM曲线

Nomogram(诺莫图) | Logistic、Cox生存分析结果可视化

Forest plot(森林图) | Cox生存分析可视化

maftools|TCGA肿瘤突变数据的汇总,分析和可视化

maftools | 从头开始绘制发表级oncoplot(瀑布图)

ggalluvial|炫酷桑基图(Sankey),你也可以秀

ggplot2|详解八大基本绘图要素

ggplot2|ggpubr进行“paper”组图合并

pheatmap|暴雨暂歇,“热图”来袭!!!

ggplot2-plotly|让你的火山图“活”过来

ggplot2| 绘制KEGG气泡图

ggplot2|绘制GO富集柱形图

绘图系列|R-corrplot相关图

绘图系列|R-VennDiagram包绘制韦恩图

R|clusterProfiler-富集分析

 

【觉得不错,右下角点个“在看”,期待您的转发,谢谢!】

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值