最长递增子序列LIS

1.复杂度O(n^2)算法

  lis[i]保存的是以arr[i]为结尾的数组序列的最长递增子序列长度

例如,arr {10,22,9,33,21,50,41,60,80} 

 LIS的长度是6和 LIS为{10,22,33,50,60,80}。

记忆化搜索
int list(int arr[],int n)  
{  
    int i,j,max;  
    max = 0;  
    for(i=1;i<=n;i++)  
        lis[i] = 1;  
      
    for(i=2;i<=n;i++)  
    {  
        for(j=1;j<i;j++)  
        {  
            if(arr[i]>arr[j] && lis[i]<lis[j]+1)  
                lis[i] = lis[j] + 1;  
        }  
    }  
      
    for(i=1;i<=n;i++)  
        if(max < lis[i])  
            max = lis[i];  
      
    return max;  
}  

2.复杂度O(nlogn)算法

  用栈模拟,二分优化查找进行替换

int stack[10010];
int lis(int arr[],int n)
{
    int i,top,mid,low,high;
    top = 0;
    stack[0] = -1;
    for(i=0;i<n;i++)
    {
        if(arr[i]>stack[top])
            stack[++top] = arr[i];
        else
        {
            low = 1;
            high = top;
            while(low <= high)
            {
                mid = (low + high)/2;
                if(arr[i] > stack[mid])
                    low = mid + 1;
                else
                    high = mid - 1;
            }
            stack[low] = arr[i];
        }
    }
    return top;
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页