51NOd 1134 最长递增子序列(dp)

本文介绍了一种求解最长递增子序列的有效算法,并通过示例解释了其工作原理。该算法使用动态规划思想,结合二分查找优化,能够在O(n log n)的时间复杂度内解决问题。


1134 最长递增子序列

给出长度为N的数组,找出这个数组的最长递增子序列。(递增子序列是指,子序列的元素是递增的)
例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10。
Input
第1行:1个数N,N为序列的长度(2 <= N <= 50000)
第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9)
Output
输出最长递增子序列的长度。

#include"stdlib.h"
#include"stdio.h" 
#include"algorithm"
using namespace std;
const int maxn=1e5;
int dp[maxn];//dp[i]表示递增数量i的最小值 
int a[maxn];
int main()
{
	int n,len=1;
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
		scanf("%d",&a[i]);
	dp[len]=a[1];
	for(int i=2;i<=n;i++)	
	{
	    if(a[i]>dp[len])
	      dp[++len]=a[i];
	    else
	    {
	    	int pos=lower_bound(dp+1,dp+len,a[i])-dp;    
			//在dp[]找第一个>=a[i]下标 
	    	dp[pos]=a[i];		 
		} 
	}
	//for(int i=1;i<=6;i++)
	//  printf("%d ",dp[i]);
	//printf("\n"); 
	printf("%d\n",len); 
	return 0;
 } 


目前没有关于51nod 3478题目的具体描述和官方公布的C++解决方案代码。以下是一种通用的解题思路以及一个示例C++代码模板,可以用于解决类似的问题。 ### 问题解题思路 51nod 3478通常可能涉及以下算法或技术: - 动态规划(DP)或状态转移方程 - 贪心算法 - 数据结构(如线段树、堆、优先队列等) - 图论算法(如最短路径、最小生成树等) ### 示例C++代码模板 以下是一个通用的C++代码框架,适用于需要读取输入并处理大规模数据的问题: ```cpp #include <bits/stdc++.h> using namespace std; typedef long long ll; const int MAXN = 100005; // 根据题目规模调整 int n; ll k; ll a[MAXN]; int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> k; for (int i = 1; i <= n; ++i) { cin >> a[i]; a[i] += a[i - 1]; // 前缀和 } // 示例逻辑:查找是否存在和为k的连续子数组 unordered_map<ll, int> prefix_map; prefix_map[0] = 0; for (int i = 1; i <= n; ++i) { if (prefix_map.find(a[i] - k) != prefix_map.end()) { cout << prefix_map[a[i] - k] + 1 << " " << i << endl; return 0; } prefix_map[a[i]] = i; } cout << "No Solution" << endl; return 0; } ``` ### 说明 - 上述代码使用了前缀和和哈希表(`unordered_map`)来高效查找是否存在和为`k`的连续子数组。 - 时间复杂度为O(n),适用于大规模输入。 - 如果题目有其他特定要求,可以根据具体条件修改代码逻辑。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值