御2pro,带屏遥控器航测设置

文章介绍了如何将大疆御2遥控器设置为航测模式,使用Pilot软件进行航测参数配置,包括相机参数、航高、GSD(GroundResolution)以及重叠率等关键设置,强调了在航测中时间和电池管理的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 前言

  • 无人机:御2 或者御2 pro,非变焦版本
  • 遥控器:大疆带屏控器 RM500
    在这里插入图片描述

1 遥控器设置

默认的遥控器控制软件CONNECT只能航拍,无法航测,必须调节为航测遥控器pilot

  1. 下滑屏幕,点击齿轮
    在这里插入图片描述

  2. 点击关于遥控器
    在这里插入图片描述

  3. 连续点击系统版本信息直至出现进入开发者模式提示
    在这里插入图片描述

  4. 返回设置界面,点击开发者选项,拉到最下面,点击强制切换遥控器模式
    在这里插入图片描述

  5. 重启遥控器,发现已经变成了pilot遥控器模式
    在这里插入图片描述

2 航测软件设置

  1. 可见已经连接到御2 pro了
    在这里插入图片描述

  2. 点击右上角…,在通用设置里面选择高德地图。
    在这里插入图片描述

  3. 新建Mavic2Pro(御2pro)相机参数

照片分辨率宽5472px高3648px
传感器尺寸宽13.2mm高8.8mm
焦距28mm
最小定时拍间隔2

在这里插入图片描述

在这里插入图片描述

3 航测设置

航测中最重要的几个参数都是相辅相成、互相影响的。
我们需要关注的核心参数是GS(Ground Resolution),有些地方也叫GSD,就是照片中一个像素宽度代表地面上的距离,这个跟航高和相机的CMOS分辨率有关,不细说。软件中会根据航高(飞行高度)告诉你GSD是多大。比如御2pro飞100m高,GSD是0.86cm左右。

其他的参数有重叠率、飞行速度、时间等,出门做外业,时间的把握很重要,航线规划的时候架次飞行时长和剩余电池电量时长最好相近。

在设置好航高、重叠率之后即可按下坐标的保存按钮,然后点击开始按钮即可开始飞行。如果一个架次无法完成作业,遥控器会自动保存航线细心,更换电池之后可以继续上次的航线任务。

不再啰嗦。谢谢阅读。

### 使用 ArcGIS Pro 进行无人机航测变化检测 #### 准备工作 为了确保能够顺利执行变化检测,在开始之前需准备好所需的影像资料和其他辅助文件。这些通常包括不同时期的无人机拍摄图像以及地理坐标信息等[^1]。 #### 数据导入与预处理 启动ArcGIS Pro之后,创建一个新的工程并加载所获取到的不同时间点下的无人机遥感影像数据集。利用`栅格函数模板`来校正可能存在的几何畸变问题,并通过镶嵌工具将多个场景拼接成完整的覆盖区域[^2]。 ```python import arcpy from arcpy import env env.workspace = "path_to_your_workspace" arcpy.CheckOutExtension("Spatial") # Example of mosaic raster datasets into one file. mosaic_tool = r"path\to\MosaicToNewRaster_management()" input_rasters = ["raster1.tif", "raster2.tif"] output_mosaic = r"output_path\mosaiced_image.tif" arcpy.MosaicToNewRaster_management(input_rasters, output_mosaic) ``` #### 执行差异分析 采用像元对比的方法来进行变化识别是最常用的方式之一。可以借助于内置的空间分析师扩展模块中的减法运算符(`Minus`)实现两个时期之间像素级别的差分计算;另外还可以考虑应用更高级的技术如支持向量机(SVM)分类器或随机森林算法以提高精度[^3]。 ```python # Calculate the difference between two images using Minus tool from Spatial Analyst extension. difference_output = r"difference_result.img" first_period_image = "before_change.tif" second_period_image = "after_change.tif" arcpy.gp.Minus_sa(first_period_image, second_period_image, difference_output) print(f"Difference analysis completed and saved as {difference_output}") ``` #### 结果可视化及解释 最后一步是对得到的结果进行渲染以便更好地理解和展示发现的变化模式。这可以通过设置合适的色彩映射方案完成,比如让新增加的部分显示为红色而消失的地方呈现蓝色等等。此外,也可以生成矢量化版本的地图用于进一步统计分析或是报告编制用途.
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vigo*GIS_RS

来瓶可乐~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值