积性函数和欧拉函数

一、函数

积性函数

若(n,m)=1,f(mn)=f(m)f(n),则f(n)为积性函数。

例如:欧拉函数、f(x)表示x的因子个数

完全积性函数

若对于任意m,n,都有f(mn)=f(m)f(n),则f(n)为完全积性函数

例如:f(x)=x^n、f(x)=x

常数函数

对于任意的自变量x,其对应函数值都为一个固定常数

例如:f(x)=1

常数函数不为积性函数

条件函数

又叫单位函数。函数值为一个条件是否成立

例如:\varepsilon(x)=[x=0]。这个函数表示x是否为0

除数函数

形如\sigma(m)=\sum_{d|m}d^{k}的函数为除数函数。

二、欧拉函数

定义

\varphi (n)=\sum_{i=1}^{n}[gcd(i,n)=1]

即1到n与n互质的数的个数。

可以推得:

\varphi (n)=n(1-\frac{1}{p_1{}})(1-\frac{1}{p_2{}})...(1-\frac{1}{p_k{}})

其中p为n所有质因数。

因为

\varphi (p^{k})=p^{k}-p^{_{k-1}}

所以可得

\varphi (n)=n\prod_{i=1}^{m}\frac{p_{i-1}-1}{p_{i}}

证明

设x只有两个质因子p,q

1~x中p的倍数为:p,2p,...,\frac{x}{p}p

1~x中q的倍数为:q,2a,...,\frac{x}{q}q

这些数互相都不互质。

所以\sigma (x)=x-\frac{x}{p}-\frac{x}{q}+\frac{x}{pq}=x(1-\frac{1}{p})(1-\frac{1}{q})

性质

1.若n为素数,则\varphi (n)=n-1 

2.若n=p^k,则\varphi (n)=p^{k}-p^{k-1}

3.若!n&1,则\varphi (2n)=\varphi (n)

4.\sum_{d|n}^{}\varphi (d)=n

5.若p|n且p^2|n,p为素数,则\varphi (n)=\varphi (p)*\varphi (n/p)

三、欧拉定理

证明

(a,m)=1时,a^{\sigma (m)}\equiv 1(modm)

若p为一个质数,由此定理可得a^{p-1}\equiv 1(modm)

所以,费马小定理为欧拉定理的一个特例。

费马小定理也可以用欧拉定理证明。

 性质

a^{b}\equiv \begin{cases} a^{b}&b<\varphi (m)\\ a^{(bmod\varphi (m))+\varphi (m)} &b\geq \varphi (m) \end{cases}(modm)\

欧拉降幂

四、莫比乌斯函数

定义

\mu (x)=\begin{cases} x= 1----return 1\\ x= p_{_1}p_{_2}...p_{_r}----return (-1)^{r}\\ else ----return 0 \end{cases}

其中p1,p2,...,pr为严格单调递增素数。

性质

\sum_{d|n}^{}\mu (d)=[n=1]=\begin{cases} \text{ if } n=1 & 1\\ \text{ if } n=1 & 0 \end{cases}

求解

若x为质数,则μ(x)=-1

否则:\begin{cases} i modprime[j]==0 \\ else &*=-1 \end{cases}

 

  • 8
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值