欧拉 phi 函数的积性证明

在数论,对正整数n,欧拉函数是小于或等于 n 的数中与 n 互素的数的数目。

若 m,n互素,那么

 

 

证明:

构造如图所示的矩阵,恰好包含 mn 个数。



则 phi(mn)是上述数字矩阵中与 mn 互素的数的个数,也就是与 m、n 同时互素的数的个数(由于m与n互素)。

由于 GCD(km+r,m)=GCD(r, m),所以每一列的 n 个元素同时与 m 互素当且仅当 GCD(r,m)=1,因此与 m互素的列共有phi(m)列

 

假定第 r 列元素满足GCD(r,m)=1. 则该列的所有元素为

 

而这些元素恰好构成模 n完全剩余系,所以其中恰有 phi(n)  个与 n 互素的数

 

综上:上述数字矩阵中与 m 互素的列共有 phi(m) 列,每个这样的列当中恰有 phi(n)  个与 n互素的数,所以总共与 mn 互素的数的个数为 phi(m) phi(n)

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值